Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
High-resolution profiles of the mass accumulation rate of biogenic silica and other geochemical proxies in two piston cores from northern Lake Malawi provide a climate signal for this part of tropical Africa spanning the past 25,000 years. The biogenic silica mass accumulation rate was low during the relatively dry late Pleistocene, when the river flux of silica to the lake was suppressed. Millennial-scale fluctuations, due to upwelling intensity, in the late Pleistocene climate of the Lake Malawi basin appear to have been closely linked to the Northern Hemisphere climate until 11 thousand years ago. Relatively cold conditions in the Northern Hemisphere coincided with more frequent north winds over the Malawi basin, perhaps resulting from a more southward migration of the Intertropical Convergence Zone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1070057 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!