The rat follitropin receptor (rFSHR) is an unusual G protein-coupled receptor in that agonist-induced activation leads to the phosphorylation of the first and third intracellular loops instead of the C-terminal tail. To determine regions of G protein-coupled receptors that affect internalization independently of phosphorylation we examined the effects of truncations of the C-terminal tail of the rFSHR on agonist-induced internalization. Our studies show that progressive truncations of a region flanked by residues 642 and 651 enhance the internalization of human follicle-stimulating hormone (hFSH). Further characterization of a mutant truncated at residue 649 (designated rFSHR-t649) and another mutant in which the 642-651 region was deleted in the context of the full-length rFSHR, designated rFSHR(Delta642-651), showed that both of them internalized hFSH at rates that were 2-3 times faster than rFSHR-wild type (wt). Like rFSHR-wt, however, the internalization of hFSH mediated by rFSHR-t649 and rFSHR(Delta642-651) can be inhibited with dominant-negative mutants of the non-visual arrestins or dynamin. Alanine-scanning mutagenesis of the 642-651 region suggests that the effects on internalization are not mediated by a single residue, however. In an attempt to understand the molecular basis of the enhanced internalization of hFSH mediated by these mutants we used an assay that can be readily used to assess the association of the rFSHR with the arrestin-3 in co-transfected cells. Using this assay we were able to show that, when compared with rFSHR-wt, rFSHR(Delta642-651) displays an approximately 4-fold enhancement in binding affinity for arrestin-3 and an approximately 1.7-fold reduction in maximal arrestin-3 binding capacity. We conclude that a short linear sequence present in the C-terminal tail of the rFSHR (642SATHNFHARK651) that is not phosphorylated limits internalization by lowering the affinity of the rFSHR for the endogenous non-visual arrestins.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M110894200DOI Listing

Publication Analysis

Top Keywords

c-terminal tail
16
short linear
8
linear sequence
8
sequence c-terminal
8
rat follitropin
8
follitropin receptor
8
arrestin-3 binding
8
tail rfshr
8
642-651 region
8
internalization hfsh
8

Similar Publications

Med15 is a general transcriptional regulator and tail module subunit within the RNA Pol II mediator complex. The Med15 protein has a well-structured N-terminal KIX domain, three activator binding domains (ABDs) and several naturally variable polyglutamine (poly-Q) tracts (Q1, Q2, Q3) embedded in an intrinsically disordered central region, and a C-terminal mediator association domain (MAD). We investigated how the presence of ABDs and changes in length and composition of poly-Q tracts influences Med15 activity using phenotypic, gene expression, transcription factor interaction and phase separation assays of truncation, deletion, and synthetic alleles.

View Article and Find Full Text PDF

Molecular mechanism of condensin I activation by KIF4A.

EMBO J

December 2024

DNA Motors Group, MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London, W12 0HS, UK.

During mitosis, the condensin I and II complexes compact chromatin into chromosomes. Loss of the chromokinesin, KIF4A, results in reduced condensin I association with chromosomes, but the molecular mechanism behind this phenotype is unknown. In this study, we reveal that KIF4A binds directly to the human condensin I HAWK subunit, NCAPG, via a conserved disordered short linear motif (SLiM) located in its C-terminal tail.

View Article and Find Full Text PDF

Distinct autoregulatory roles of ELFN1 intracellular and extracellular domains on membrane trafficking, synaptic localization, and dimerization.

J Biol Chem

December 2024

Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA. Electronic address:

Synaptic adhesion molecules are essential components of the synapse, yet the diversity of these molecules and their associated functions remain to be fully characterized. Extracellular leucine rich repeat and fibronectin type III domain containing 1 (ELFN1) is a postsynaptic adhesion molecule in the brain that has been increasingly implicated in human neurological disease. ELFN1 is best known for trans-synaptically modulating group III metabotropic glutamate receptors (mGluRs).

View Article and Find Full Text PDF

Understanding metabolic plasticity of animal evolution is a fundamental challenge in evolutionary biology. Owing to the diversification of insect wing morphology and dynamic energy requirements, the molecular adaptation mechanisms underlying the metabolic pathways in wing evolution remain largely unknown. This study reveals the pivotal role of the duplicated Apolipoprotein D (ApoD) gene in lipid and energy homeostasis in the lepidopteran wing.

View Article and Find Full Text PDF

Natural macrocyclic peptides produced by microorganisms serve as valuable resources for therapeutic compounds, including antibiotics, anticancer agents, and immune suppressive agents. Nonribosomal peptide synthetases (NRPSs) are responsible for the biosynthesis of macrocyclic peptides. NRPSs are large multimodular enzymes, and each module recognizes and incorporates one specific amino acid into the polypeptide product.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!