Sequence comparison of pseudomurein endoisopeptidases PeiW encoded by the defective prophage PsiM100 of Methanothermobacter wolfeii, and PeiP encoded by phage PsiM2 of Methanothermobacter marburgensis, revealed that the two enzymes share only limited similarity. Their amino acid sequences comprise an N-terminal domain characterized by the presence of direct repeats and a C-terminal domain with a catalytic triad C-H-D as in thiol proteases and animal transglutaminases. Both PeiW and PeiP catalyze the in vitro lysis of M. marburgensis cells under reducing conditions and exhibit characteristics of metal-activated peptidases. Optimal temperature and pH were determined to be 63 degrees C and 6.4 for His-tagged PeiP and 71 degrees C and 6.4 for His-tagged PeiW, respectively. Database search results suggest that PeiW and PeiP are the first two experimentally identified members of a novel family of proteases in a superfamily of archaeal, bacterial, and eukaryotic protein homologs of animal transglutaminases.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6968.2002.tb11059.xDOI Listing

Publication Analysis

Top Keywords

peiw peip
12
pseudomurein endoisopeptidases
8
endoisopeptidases peiw
8
members novel
8
novel family
8
family proteases
8
animal transglutaminases
8
degrees his-tagged
8
peiw
5
peip
5

Similar Publications

Insights into the catalytic mechanism of archaeal peptidoglycan endoisopeptidases from methanogenic phages.

Int J Biol Macromol

January 2025

Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. Electronic address:

Archaeal peptidoglycan, a crucial component of the cell walls of Methanobacteria and Methanopyri, enhances the tightness of methanogenic cells and their resistance to known lytic enzymes and antibiotics. Although archaeal peptidoglycan endoisopeptidases (Pei) can reportedly degrade archaeal peptidoglycan, their biochemistry is still largely unknown. In this study, we investigated the activity and catalytic properties of the endoisopeptidases PeiW and PeiP using synthesized isopeptides identical to natural substrates.

View Article and Find Full Text PDF

Pseudomurein endoisopeptidases cause lysis of the cell walls of methanogens by cleaving the isopeptide bond Ala-ε-Lys in the peptide chain of pseudomurein. PeiW and PeiP are two thermostable pseudomurein endoisopeptidases encoded by phage ΨM100 of Methanothermobacter wolfei and phages ΨM1 and ΨM2 of Methanothermobacter marburgensis, respectively. A continuous assay using synthetic peptide substrates was developed and used in the biochemical characterisation of recombinant PeiW and PeiP.

View Article and Find Full Text PDF

Two major archaeal pseudomurein endoisopeptidases: PeiW and PeiP.

Archaea

November 2010

Department of Molecular Genetics, GBB, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands.

PeiW (UniProtKB Q7LYX0) and PeiP (UniProtKB Q77WJ4) are the two major pseudomurein endoisopeptidases (Pei) that are known to cleave pseudomurein cell-wall sacculi of the members of the methanogenic orders Methanobacteriales and Methanopyrales. Both enzymes, originating from prophages specific for some methanogenic archaeal species, hydrolyze the ϵ(Ala)-Lys bond of the peptide linker between adjacent pseudomurein layers. Because lysozyme is not able to cleave the pseudomurein cell wall, the enzymes are used in protoplast preparation and in DNA isolation from pseudomurein cell-wall-containing methanogens.

View Article and Find Full Text PDF

Identification of pseudomurein cell wall binding domains.

Mol Microbiol

December 2006

Department of Microbiology, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, the Netherlands.

Methanothermobacter thermautotrophicus is a methanogenic Gram-positive microorganism with a cell wall consisting of pseudomurein. Currently, no information is available on extracellular pseudomurein biology and so far only two prophage pseudomurein autolysins, PeiW and PeiP, have been reported. In this paper we show that PeiW and PeiP contain two different N-terminal pseudomurein cell wall binding domains.

View Article and Find Full Text PDF

Sequence comparison of pseudomurein endoisopeptidases PeiW encoded by the defective prophage PsiM100 of Methanothermobacter wolfeii, and PeiP encoded by phage PsiM2 of Methanothermobacter marburgensis, revealed that the two enzymes share only limited similarity. Their amino acid sequences comprise an N-terminal domain characterized by the presence of direct repeats and a C-terminal domain with a catalytic triad C-H-D as in thiol proteases and animal transglutaminases. Both PeiW and PeiP catalyze the in vitro lysis of M.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!