The objective of this study was to gain insight into the electronic structure of silver-silver chloride cluster composites and especially into the metal-semiconductor interface. For this purpose a theoretical study of (AgCl)(n) (n=4, 32, 108, 192, and 256), of Ag(m) (m=1-9, 30, 115, 276, and 409), and of the cluster composites Ag(115)-(AgCl)(192) and Ag(409)-(AgCl)(192) has been carried out. Density of levels (DOL), local density of levels (l-DOL), and projection of surface states, as well as projection of properties of individual atoms or groups of atoms obtained in molecular orbital calculations, are shown to be powerful tools for gaining deep insight into the properties of these large systems. The Ag(115)-(AgCl)(192) aggregate, consisting of a cubic Ag(115) cluster without corner atoms on top of a cubic (AgCl)(192) cluster, was found to be remarkably stable with a cluster-to-cluster distance of about 280 pm, and a geometry in which the number of bonding interactions between the silver atoms of Ag(115) and the chloride ions of (AgCl)(192) is at its maximum. A sharp jump in charge distribution occurs at the Ag(115)-(AgCl)(192) composite interface. The first AgCl slab picks up negative charge from the two adjacent silver slabs, so that in total the silver cluster is positively charged. In addition, the core of the silver cluster is positively charged with respect to its outermost layer. The main reason for the charge transfer from the silver cluster to the silver chloride is the newly formed MIGS (metal induced gap states) in the energy-gap range of the silver chloride and the MIdS (metal induced d states) in the d-orbital region. Their wave functions mix with orbitals of the silver cluster and with both the orbitals of the silver and the chloride ions of the silver chloride. The MIGS and the MIdS are of a quite localized nature. In them, nearest neighbor interactions dominate, with the exception of close-lying silver chloride surface states-which mix in to a large extent. We conclude that especially the MIGS not only influence the photochemical properties of silver chloride, but that their existence might be probed by appropriate spectroscopic measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1002/1521-3765(20020415)8:8<1785::aid-chem1785>3.0.co;2-xDOI Listing

Publication Analysis

Top Keywords

silver chloride
24
silver cluster
16
silver
12
chloride
9
cluster
9
silver-silver chloride
8
chloride cluster
8
cluster composites
8
density levels
8
chloride ions
8

Similar Publications

Energy-level rich nanorings hybridizing Ag, Au and AgCl as high-performance SERS substrate for numerous molecules.

Talanta

January 2025

MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, China. Electronic address:

The current surface-enhanced Raman scattering (SERS) substrates typically feature a single energy level, posing challenges in coordinating electromagnetic enhancement (EM) and chemical enhancement (CM), thereby limiting the sensitive detection of numerous crucial target molecules. In this study, novel aggregated nanorings (a-NRs) hybridizing Ag, Au and AgCl are constructed as SERS substrates. On one hand, the obtained a-NRs exhibit robust localized surface plasmon resonance absorption, whose wavelength can be tuned to match three commonly used laser wavelengths (532, 633 and 785 nm) to gain strong EM effect.

View Article and Find Full Text PDF

Synthesis, photocatalytic activity for tetracycline degradation under visible light, and kinetic study of Ag/AgCl/ZIF-11 nanocomposite.

Environ Sci Pollut Res Int

January 2025

Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, Semnan, 35131-19111, Iran.

For the first time, Ag/AgCl/zeolitic imidazolate framework-11 nanocomposite (Ag/AgCl/ZIF-11) as photocatalyst was synthesized and investigated on tetracycline (TC) degradation under visible light. ZIF-11 (Z), Ag/AgCl (A), and four composites (AZ, AZ, AZ, AZ) were made and characterized by XRD, FTIR, Raman, BET, SEM, EDS, XPS, and DRS analysis. The characteristic peaks of ZIF-11 and Ag were observed at 4.

View Article and Find Full Text PDF

The reference electrode's performance is essential for ensuring the accuracy of electrochemical sensors in marine environments. Yet, the many existing reference electrodes can exhibit sensitivity to salinity variations, potentially leading to inaccuracies in the measurement process. Herein, we have designed a reliable solid-state reference electrode by introducing SiO-stabilized 1-methyl-3-octylimidazolium bis(trifluoromethyl sulfonyl)imide ([Cmim] [Ntf]) into a P(VdF--HFP) matrix with a SPEEK/[Cmim] [Ntf] coated Ag/AgCl as substrate.

View Article and Find Full Text PDF

This study proposed a microfluidic chip for the detection and quantification of NSE proteins, aimed at developing a rapid point-of-care testing system for early lung cancer diagnosis. The proposed chip structure integrated an electrochemical biosensor within a straight PDMS microchannel, enabling a significant reduction in sample volume. Additionally, a method was developed to deposit silver and silver chloride layers onto the reference electrode.

View Article and Find Full Text PDF

This research targets the need for eco-friendly strategies in the synthesis of bioactive materials, addressing the importance of valorization of vegetal waste. This study focuses on developing biohybrids containing biomimetic lipid vesicles and phytosynthesized gold-silver chloride nanoparticles (AuAgCl NPs) derived from L. extract.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!