Herein we describe in detail the bonding properties and electrochemical behavior of the first known triosmium carbonyl clusters with a coordinated redox-active ligand 4,4',5,5'-tetramethyl-2,2'-biphosphinine (tmbp), the phosphorus derivative of 2,2'-bipyridine. The clusters investigated were [Os(3)(CO)(10)(tmbp)] (1) and its derivative [Os(3)(CO)(9)(PPh(3))(tmbp)] (2). The crystal structures of both clusters are compared with those of relevant compounds; they served as the basis for density functional theory (DFT and time-dependent DFT) calculations. The experimental and theoretical data reveal an unexpected and unprecedented bridging coordination mode of tmbp, with each P atom bridging two metal atoms. The tmbp ligand is formally reduced by transfer of two electrons from the triangular cluster core that consequently lacks one of the metal-metal bonds. Both 1 and 2 therefore represent 50e(-) clusters with a coordinated 8e(-) donor, [tmbp](2-). The HOMO and LUMO of 1 and 2 possess a predominant contribution from different pi*(tmbp) orbitals, implying that the lowest energy excited state possesses a significant intraligand character. This is in agreement with the photostability of these clusters. DFT calculations also predict the experimentally observed structure of 1 to be the most stable one in a series of several plausible structural isomers. Stepwise two-electron electrochemical reduction of 1 and 2 results in dissociation of CO and PPh(3), respectively, and formation of the [Os(3)(CO)(9)(tmbp)](2-) ion. The initially produced radical anions of the parent clusters, in which the odd electron is predominantly localized on the tmbp ligand, are sufficiently stable at low temperatures and can be observed with IR spectroelectrochemistry. The electron-deficiency of the cluster core in 1 permits facile electrocatalytic substitution of a CO ligand by tertiary phosphane and phosphite donors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1521-3765(20020402)8:7<1741::aid-chem1741>3.0.co;2-z | DOI Listing |
Chemphyschem
January 2025
Shanxi University, Institute of Molecular Science, CHINA.
Delocalized multicenter bonds play a crucial role in clusters with a planar hypercoordinate center(s), making it difficult for highly electronegative elements, especially halogen atoms, to achieve the planar hypercoordinate arrangement. Herein, we introduce a star-like cluster Br6Li5-, whose global minimum contains a planar pentacoordinate bromine (ppBr). In this cluster, the central ppBr atom coordinates with five alkali metal Li atoms, which in turn bridge an equal number of electronegative Br atoms in the periphery, leading to the formation of the binary cluster Br6Li5-.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, United States of America.
Negotiating social dynamics among allies and enemies is a complex problem that often requires individuals to tailor their behavioral approach to a specific situation based on environmental and/or social factors. One way to make these contextual adjustments is by arranging behavioral output into intentional patterns. Yet, few studies explore how behavioral patterns vary across a wide range of contexts, or how allies might interlace their behavior to produce a coordinated response.
View Article and Find Full Text PDFChemSusChem
January 2025
Osaka University: Osaka Daigaku, Research Center for Solar Energy Chemistry, 1-3 Machikaneyama, Toyonaka, 560-8531, Osaka, JAPAN.
Electrochemically grown copper nanoclusters (CuNCs: < 3 nm) from single-atom catalysts have recently attracted intensive attention as electrocatalysts for CO2 and CO reduction reaction (CO2RR/CORR) because they exhibit distinct product selectivity compared with conventional Cu nanoparticles (typically larger than 10 nm). Herein, we conducted a detailed investigation into the size dependence of CuNCs on selectivity for multicarbon (C2+) production in CORR. These nanoclusters were electrochemically grown from single Cu atoms dispersed on covalent triazine frameworks (Cu-CTFs).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Tsinghua University, Chemistry Department, 1 Tsinghua Yuan, Haidian District, 100084, Beijing, CHINA.
Open metal sites are crucial in catalysis. We have used a "loose coordination strategy" (LCS) to preorganize open metal sites in gold cluster catalysts. A gold nanocluster with composition of [Au26(3,4-Me2-Ph-form)9(iPr2-imy)3(Me2S)](BF4)2(iPr2-imy = 1,3-Diisopropylimidazolium tetrafluoroborate, 3,4-Me2-Ph-form = N,N'-Di(3,4-dimethyl-phenyl)formamidine) (Au26) has been obtained by one pot synthesis, i.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, P. R. China.
Amorphous clusters are gaining prominence as prospective hosts for sodium-ion hybrid capacitors (SIHCs), but their efficacy is still affected by atomic coordination. Optimization of ion storage and charge transport can be achieved through high coordination and bimetallic configurations. Herein, high-coordination amorphous P-Nb-W-P (Nb/W-P) clusters are skillfully tailored by bridging Nb into the second shell of W in the W-P configuration, nested in situ in conductive and stable N, P co-doped carbon nanospheres (Nb/W-P@NPC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!