This study was designed to examine the effect of increasing age on the recruitment and activation of motor units (MU) in the biceps brachii muscle, using the mechanomyogram (MMG)/force relationship during isometric ramp contractions. The relationships between the root mean squared amplitude (RMS) and mean power frequency (MPF) of the MMG and relative force (% MVC) in the elderly (male, n = 10, age = 69.8 +/- 4.7 years, mean +/- SD) were markedly different from those in the young group (male, n = 15, age = 22.7 +/- 1.8 years). In elderly individuals, the RMS increased progressively with force up to 57.6 +/- 3.4% MVC, when a brief rapid increase was followed by a stable trend beyond 63.6 +/- 3.7% MVC. The MPF increased slowly up to 59.4 +/- 2.3% MVC; after a temporary reduction from 59.4% to 64.3 +/- 2.0% MVC, it then increased progressively again. In conjunction with absolute force (F(abs)), both the RMS and MPF in the elderly were smaller than those in the young group throughout the submaximal levels of force exerted. The results reflect an alteration in MU activation strategy, with a predominant role for MUs with slow-twitch fibers and an effective fused tetanus induced at lower firing rate of the MUs, resulting from age-related neuromuscular changes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mus.10076 | DOI Listing |
JMIR Aging
January 2025
Centre of Expertise in Care Innovation, Department of PXL - Healthcare, PXL University of Applied Sciences and Arts, Hasselt, Belgium.
Background: Advancements in mobile technology have paved the way for innovative interventions aimed at promoting physical activity (PA).
Objective: The main objective of this feasibility study was to assess the feasibility, usability, and acceptability of the More In Action (MIA) app, designed to promote PA among older adults. MIA offers 7 features: personalized tips, PA literacy, guided peer workouts, a community calendar, a personal activity diary, a progression monitor, and a chatbot.
JMIR Ment Health
January 2025
Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea.
Background: Insomnia is a prevalent sleep disorder affecting millions worldwide, with significant impacts on daily functioning and quality of life. While traditionally assessed through subjective measures such as the Insomnia Severity Index (ISI), the advent of wearable technology has enabled continuous, objective sleep monitoring in natural environments. However, the relationship between subjective insomnia severity and objective sleep parameters remains unclear.
View Article and Find Full Text PDFDelayed fracture healing (DFH), a common complication of post-fracture surgery, exhibits an incompletely understood pathogenesis. The present study endeavors to investigate the roles and underlying mechanisms of miR-656-3p and Bone Morphogenetic Protein-2 (BMP-2) in DFH. It was recruited 94 patients with normal fracture healing (NFH) and 88 patients with DFH of the femoral neck.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
Facile pesticide nanocapsules were successfully prepared by directly encapsulating the antisolvent precipitation of pesticides through instantaneous "on site" coordination assembly of tannic acid and Fe, avoiding tedious preparation, time consumption, and large amounts of organic solvents. The pesticide nanocapsules showed excellent resistance to ultraviolet photolysis and rainwater washing owing to the nanocapsule walls. The smart pesticide nanocapsules exhibited the controlled release of pesticides under multidimensional stimuli, such as acidic/alkaline pH, glutathione, HO, phytic acid, laccase, tannase, and sunlight, which were related to the physiological and natural environments of crops, pests, and pathogens.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Molecular Synthesis Center, Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
2-Deoxy-β-glycosides are essential components of natural products and pharmaceuticals; however, the corresponding 2-deoxy-β-glycosidic bonds are challenging to chemically construct. Herein, we describe an efficient catalytic protocol for synthesizing 2-deoxy-β-glycosides via either IPrAuNTf-catalyzed activation of a unique 1,2--positioned C2--propargyl xanthate (OSPX) leaving group or (PhO)PAuNTf-catalyzed activation of a 1,2--C2--alkynylbenzoate (OABz) substituent of the corresponding thioglycosides. These activation processes trigger 1,2-alkyl/arylthio-migration glycosylation, enabling the synthesis of structurally diverse 2-deoxy-β-glycosides under mild reaction conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!