The delta subunit is a novel subunit of the pentameric gamma-aminobutyric acid (GABA)(A) receptor that conveys special pharmacological and functional properties to recombinant receptors and may be particularly important in mediating tonic inhibition. Mice that lack the delta subunit have been produced by gene-targeting technology, and these mice were studied with immunohistochemical and immunoblot methods to determine whether changes in GABA(A) receptors were limited to deletion of the delta subunit or whether alterations in other GABA(A) receptor subunits were also present in the delta subunit knockout (delta-/-) mice. Immunohistochemical studies of wild-type mice confirmed the restricted distribution of the delta subunit in the forebrain. Regions with moderate to high levels of delta subunit expression included thalamic relay nuclei, caudate-putamen, molecular layer of the dentate gyrus, and outer layers of the cerebral cortex. Virtually no delta subunit labeling was evident in adjacent regions, such as the thalamic reticular nucleus, hypothalamus, and globus pallidus. Comparisons of the expression of other subunits in delta-/- and wild-type mice demonstrated substantial changes in the alpha4 and gamma2 subunits of the GABA(A) receptor in the delta-/- mice. gamma2 Subunit expression was increased, whereas alpha4 subunit expression was decreased in delta-/- mice. Importantly, alterations of both the alpha4 and the gamma2 subunits were confined primarily to brain regions that normally expressed the delta subunit. This suggests that the additional subunit changes are directly linked to loss of the delta subunit and could reflect local changes in subunit composition and function of GABA(A) receptors in delta-/- mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cne.10210 | DOI Listing |
The HIPRA-HH-2 was a multicentre, randomized, active-controlled, double-blind, non-inferiority phase IIb clinical trial comparing the immunogenicity and safety of the PHH-1V adjuvanted recombinant vaccine as a heterologous booster against homologous booster with BNT162b2. Interim results demonstrated strong humoral and cellular immune response against the SARS-CoV-2 Wuhan-Hu-1 strain and the Beta, Delta, and Omicron BA.1 variants up to day 98 post-dosing.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
Despite their safety and widespread use, conventional protein antigen-based subunit vaccines face significant challenges such as low immunogenicity, insufficient long-term immunity, poor CD8 T-cell activation, and poor adaptation to viral variants. To address these issues, an infection-mimicking gel (IM-Gel) is developed that is designed to emulate the spatiotemporal dynamics of immune stimulation in acute viral infections through in situ supramolecular self-assembly of nanoparticulate-TLR7/8a (NP-TLR7/8a) and an antigen with tannic acid (TA). Through collagen-binding properties of TA, the IM-Gel enables sustained delivery and enhanced retention of NP-TLR7/8a and protein antigen in the lymph node subcapsular sinus of mice for over 7 days, prolonging the exposure of vaccine components in both B cell and T cell zones, leading to robust humoral and cellular responses.
View Article and Find Full Text PDFClinical trials have shown favorable effects of exercise on frailty, supporting physical activity (PA) as a treatment and prevention strategy. Proteomics studies suggest that PA alters levels of many proteins, some of which may function as molecules in the biological processes underlying frailty. However, these studies have focused on structured exercise programs or cross-sectional PA-protein associations.
View Article and Find Full Text PDFJ Integr Bioinform
January 2025
Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung 40133, Indonesia.
The emergence of new variants of SARS-CoV-2, including Alpha, Beta, Gamma, Delta, Omicron variants, and XBB sub-variants, contributes to the number of coronavirus cases worldwide. SARS-CoV-2 is a positive RNA virus with a genome of 29.9 kb that encodes four structural proteins: spike glycoprotein (S), envelope glycoprotein (E), membrane glycoprotein (M), and nucleocapsid glycoprotein (N).
View Article and Find Full Text PDFPain
December 2024
Department of Cell and Developmental Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
The mesopontine tegmental anesthesia area (MPTA) is a focal brainstem locus which, when exposed to GABAergic agents, induces brain-state transitioning from wakefulness to unconsciousness. Correspondingly, MPTA lesions render animals relatively insensitive to GABAergic anesthetics delivered systemically. Using chemogenetics, we recently identified a neuronal subpopulation within the MPTA whose excitation induces this same pro-anesthetic effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!