The tumour-suppressor gene p53 is frequently mutated in human cancers and is important in the cellular response to DNA damage. Although the p53 family members p63 and p73 are structurally related to p53, they have not been directly linked to tumour suppression, although they have been implicated in apoptosis. Given the similarity between this family of genes and the ability of p63 and p73 to transactivate p53 target genes, we explore here their role in DNA damage-induced apoptosis. Mouse embryo fibroblasts deficient for one or a combination of p53 family members were sensitized to undergo apoptosis through the expression of the adenovirus E1A oncogene. While using the E1A system facilitated our ability to perform biochemical analyses, we also examined the functions of p63 and p73 using an in vivo system in which apoptosis has been shown to be dependent on p53. Using both systems, we show here that the combined loss of p63 and p73 results in the failure of cells containing functional p53 to undergo apoptosis in response to DNA damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/416560a | DOI Listing |
Biol Direct
November 2024
Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy.
Here, we investigated the potential interaction between bromodomain-containing protein 4 (BRD4), an established epigenetic modulator and transcriptional coactivator, and p63, a member of the p53 transcription factor family, essential for epithelial development and skin homeostasis. Our protein-protein interaction assays demonstrated a strong and conserved physical interaction between BRD4 and the p53 family members-p63, p73, and p53-suggesting a shared binding region among these proteins. While the role of BRD4 in cancer development through its interaction with p53 has been explored, the effects of BRD4 and Bromodomain and Extra Terminal (BET) inhibitors in non-transformed cells, such as keratinocytes, remain largely unknown.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY 12222, USA.
The p53 family of transcription factors (p53, p63 and p73) regulate diverse organismal processes including tumor suppression, maintenance of genome integrity and the development of skin and limbs. Crosstalk between transcription factors with highly similar DNA binding profiles, like those in the p53 family, can dramatically alter gene regulation. While p53 is primarily associated with transcriptional activation, p63 mediates both activation and repression.
View Article and Find Full Text PDFCommun Chem
September 2024
Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
P53 Phase separation is crucial towards amyloid aggregation and p63 and p73 have enhanced expression in tumors. This study examines the phase behaviors of p53, p63, and p73. Here we show that unlike the DNA-binding domain of p53 (p53C), the p63C and p73C undergo phase separation, but do not form amyloids under physiological temperatures.
View Article and Find Full Text PDFCancer Cell
June 2024
Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA. Electronic address:
p53 was discovered 45 years ago as an SV40 large T antigen binding protein, coded by the most frequently mutated TP53 gene in human cancers. As a transcription factor, p53 is tightly regulated by a rich network of post-translational modifications to execute its diverse functions in tumor suppression. Although early studies established p53-mediated cell-cycle arrest, apoptosis, and senescence as the classic barriers in cancer development, a growing number of new functions of p53 have been discovered and the scope of p53-mediated anti-tumor activity is largely expanded.
View Article and Find Full Text PDFNature
March 2024
Massachusetts Institute of Technology, Department of Biology and Center for Cancer Research, Cambridge, Massachusetts, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!