A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. | LitMetric

Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers.

Nature

Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel.

Published: April 2002

Shot noise measurements have been used to measure the charge of quasiparticles in the fractional quantum Hall (FQH) regime. To induce shot noise in an otherwise noiseless current of quasiparticles, a barrier is placed in its path to cause weak backscattering. The measured shot noise is proportional to the charge of the quasiparticles; for example, at filling factor v=1/3, noise corresponding to q=e/3 appears. For increasingly opaque barriers, the measured charge increases monotonically, approaching q=e asymptotically. It was therefore believed that only electrons, or alternatively, three bunched quasiparticles, can tunnel through high-potential barriers encountered by a noiseless current of quasiparticles. Here we investigate the interaction of e/3 quasiparticles with a strong barrier in FQH samples and find that bunching of quasiparticles in the strong backscattering limit depends on the average dilution of the quasiparticle current. For a very dilute current, bunching ceases altogether and the transferred charge approaches q=e/3. This surprising result demonstrates that quasiparticles can tunnel individually through high-potential barriers originally thought to be opaque for them.

Download full-text PDF

Source
http://dx.doi.org/10.1038/416515aDOI Listing

Publication Analysis

Top Keywords

high-potential barriers
12
shot noise
12
quasiparticles
9
charge quasiparticles
8
noiseless current
8
current quasiparticles
8
quasiparticles tunnel
8
quasiparticles strong
8
bunching fractionally
4
fractionally charged
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!