A kinematic analysis of high-speed treadmill sprinting over a range of velocities.

Med Sci Sports Exerc

Sports Biomechanics Laboratory, Faculty of Physical Education, University of Alberta, Edmonton, Alberta, Canada, T6G 2H9.

Published: April 2002

Introduction: The purpose of this study was to measure changes in stride characteristics and lower-extremity kinematics of the hip and knee as a function of increasing treadmill velocity, at velocities ranging from submaximal to near maximal.

Methods: Six power/speed athletes experienced at sprinting on a treadmill performed trials at 70%, 80%, 90%, and 95% of their previous individual maximum velocity, with video data collected in the sagittal view at 60 Hz.

Results: Significant differences were seen in stride frequency (70%, 80%, P < 0.01; 90%, P < 0.05), stance time (70%, 80%, P < 0.01; 90%, P < 0.05) flight time (70%, P < 0.01; 80%, P < 0.05), hip flexion angle (70%, P < 0.01), hip flexion angular velocity (70%, P < 0.01), hip extension angular velocity (70%, 80%, P < 0.01), knee flexion angular velocity (70%, 80%, P < 0.01), and knee extension angular velocity (70%, P < 0.01), as compared with the near maximum (95%) velocity. Coefficient of variation (CV) values showed that the positional variables at the hip and knee were more variable at faster test conditions, indicating that kinematic changes occur as a function of increased treadmill velocity.

Conclusions: The results indicated that at slower velocities, there were differences in the stride characteristics and lower-extremity kinematics while sprinting on a treadmill. As the velocity approached near maximum mechanical breakdown was seen, suggesting that velocities greater than 90% should be used selectively during treadmill training.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00005768-200204000-00016DOI Listing

Publication Analysis

Top Keywords

70% 80%
20
80% 001
16
70% 001
16
angular velocity
16
velocity 70%
16
70%
9
stride characteristics
8
characteristics lower-extremity
8
lower-extremity kinematics
8
hip knee
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!