Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Negative selection eliminates thymocytes bearing autoreactive T cell receptors (TCR) via an apoptotic mechanism. We have cloned an inhibitor of NF-kappa B, I kappa BNS, which is rapidly expressed upon TCR-triggered but not dexamethasone- or gamma irradiation-stimulated thymocyte death. The predicted protein contains seven ankyrin repeats and is homologous to I kappa B family members. In class I and class II MHC-restricted TCR transgenic mice, transcription of I kappa BNS is stimulated by peptides that trigger negative selection but not by those inducing positive selection (i.e., survival) or nonselecting peptides. I kappa BNS blocks transcription from NF-kappa B reporters, alters NF-kappa B electrophoretic mobility shifts, and interacts with NF-kappa B proteins in thymic nuclear lysates following TCR stimulation. Retroviral transduction of I kappa BNS in fetal thymic organ culture enhances TCR-triggered cell death consistent with its function in selection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1097-2765(02)00469-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!