Phenylalanine-24 in the N-terminal region of ammodytoxins is important for both enzymic activity and presynaptic toxicity.

Biochem J

Department of Biochemistry and Molecular Biology, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.

Published: April 2002

Ammodytoxins (Atxs) are group II phospholipases A(2) (PLA(2)s) with presynaptic toxicity from venom of the snake Vipera ammodytes ammodytes. The molecular basis of their neurotoxicity, and that of similar PLA(2) toxins, is still to be explained. To address this problem, a surface-exposed aromatic residue, Phe(24), in the N-terminal region of the most potent Atx, AtxA, was replaced by other aromatic (tyrosine, tryptophan), hydrophobic (alanine) and polar uncharged (serine, asparagine) residues. The mutants were produced in the bacterial expression system, refolded in vitro and purified to homogeneity. All but the Trp(24) mutant, whose activity was similar to that of the wild type, showed a considerable decrease (40-80%) in enzymic activity on a micellar phosphatidylcholine substrate. This result indicates an important role for the aromatic side chains of phenylalanine or tryptophan, but not tyrosine, in PLA(2) activity, very likely at a stage of interfacial adsorption of the enzyme to zwitterionic aggregated substrates. The substitutions of Phe(24) also significantly decreased toxicity in mice, with the most prominent decrease, of 130-fold, observed in the case of the Asn(24) mutant. The results with the mutants show that there is no correlation between enzymic activity, lethality and binding affinity for three AtxA neuronal receptors (R180, R25 and calmodulin). Our results suggest a critical involvement of Phe(24) in the neurotoxicity of AtxA, apparently at a stage which does not involve the interaction with the known Atx-binding neuronal proteins and catalytic activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1222486PMC
http://dx.doi.org/10.1042/0264-6021:3630353DOI Listing

Publication Analysis

Top Keywords

enzymic activity
12
n-terminal region
8
presynaptic toxicity
8
activity
6
phenylalanine-24 n-terminal
4
region ammodytoxins
4
ammodytoxins enzymic
4
activity presynaptic
4
toxicity ammodytoxins
4
ammodytoxins atxs
4

Similar Publications

L-carnitine protects against oxidative damage and neuroinflammation in cerebral cortex of rats submitted to chronic chemically-induced model of hyperphenylalaninemia.

Metab Brain Dis

January 2025

Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, CEP 90610-000, RS, Brazil.

Phenylketonuria is a genetic disorder characterized by high phenylalanine levels, the main toxic metabolite of the disease. Hyperphenylalaninemia can cause neurological impairment. In order to avoid this symptomatology, patients typically follow a phenylalanine-free diet supplemented with a synthetic formula that provides essential amino acids, including L-carnitine.

View Article and Find Full Text PDF

Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs.

View Article and Find Full Text PDF

Purpose: Patients with partial or complete DPD deficiency have decreased capacity to degrade fluorouracil and are at risk of developing toxicity, which can be even life-threatening.

Case: A 43-year-old man with moderately differentiated rectal adenocarcinoma on capecitabine presented to the emergency department with complaints of nausea, vomiting, diarrhea, weakness, and lower abdominal pain for several days. Laboratory findings include grade 4 neutropenia (ANC 10) and thrombocytopenia (platelets 36,000).

View Article and Find Full Text PDF

IL-7 secreted by keratinocytes induces melanogenesis via c-kit/MAPK signaling pathway in Melan-a melanocytes.

Arch Dermatol Res

January 2025

Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin, 17104, Republic of Korea.

Abnormal melanin synthesis within melanocytes can result in pigmentary skin disorders. Although pigmentation alterations associated with inflammation are frequently observed, the precise reason for this clinical observation is still unknown. More specifically, although many cytokines are known to be critical for inflammatory skin processes, it is unclear how they affect epidermal melanocyte function.

View Article and Find Full Text PDF

Background: Celiac disease (CeD) has shown an association with autoimmune disorders including vitiligo and alopecia areata (AA). Ritlecitinib, a JAK3 and TEC kinase family inhibitor, has been approved for treatment of patients with AA and is in late-stage development for vitiligo. Ritlecitinib inhibits cytotoxic T cells, NK cells, and B cells which play a role in the pathogenesis of CeD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!