Somatostatin (SRIF, somatotropin release inhibiting factor), discovered for its inhibitory action on growth hormone (GH) secretion from pituitary, is an abundant neuropeptide. Two forms, SRIF14 and SRIF28 exist. Recently, a second family of peptides with very similar sequences and features was described; the cortistatins (CST), CST17 and CST29 which are brain selective. The five cloned SRIF receptors (sst1-5) belong to the G-protein coupled/ heptathelical receptor family. Structural and operational features distinguish two classes of receptors; SRIF1 - sst2/sst3/sst5 (high affinity for octreotide or seglitide) and SRIF2 = sst1/sst4(very low affinitty for the aforementioned ligands). The affinity of SRIF receptors for somatostatins and cortistatins is equally high, and it is not clear whether selective receptors do exist for one or the other of the peptides. Several radiologlands label all SRIF receptors, e.g., [125]LTT-SRIF28' [l25I]CGP23996, [125]Tyr10cortistatin or [125I]Tyr11SRIF14. In contrast, [125I]Tyr3octreotide, [125I]BIM23027, [125I]MK678 or [125I]D-Trp8SRIF14 label predominantly SRIF1 sites, especially sst2 and possibly sst5 receptors. In brain, [125I]Tyr3octreotide binding equates with sst2 receptor mRNA distribution. Native SRIF2receptors can be labeled with [125I]SRIF14 in the presence of high NaCl in brain (sst1) or lung (sst4) tissue. Short cyclic or linear peptide analogs show selectivity for sst2/sst5 (octreotide, lanreotide, BIM 23027), sst1 (CH-275), sst3 (sst3-ODN-8), or sst5 receptors (BIM 23268); although claims for selectivity have not always been confirmed. Beta peptides ith affinity for SRIF receptors are also reported. The general lack of SRIF receptor antagonists is unique for peptide receptors, although CYN 154806 is a selective and potent sst2 antagonist. Nonpeptide ligands are still rare, although a number of molecules have been reported with selectivity and potency for sst1 (L 757,519), sst2 (L 779,976), sst3 (L 796,778), sst4 (NNC 26-9100, L 803,087) or sst1/sst5 receptors (L 817,018). Such molecules are essential to establish the role of SRIF receptors, e.g., sst1 in hypothalamic glutamate currents: sst2 in inhibiting release of GH, glucagon, TSH, gastric acid secretion, pain, seizures and tumor growth, and sst5 in vascular remodeling and inhibition of insulin and GH release.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1385/JMN:18:1-2:15 | DOI Listing |
Cancers (Basel)
October 2024
Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland.
Background/objectives: Colorectal cancer (CRC) is one of the most common human malignancies worldwide. The somatotropin-releasing inhibitory factor/somatostatin (SRIF/SST) acts through activation of five membrane receptors (SSTRs, SST1-5). The diagnostic and prognostic role of these peptides in sporadic CRC remains unclear.
View Article and Find Full Text PDFPharmacol Rev
October 2024
Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
Over 4 decades of research support the link between Alzheimer disease (AD) and somatostatin [somatotropin-releasing inhibitory factor (SRIF)]. SRIF and SRIF-expressing neurons play an essential role in brain function, modulating hippocampal activity and memory formation. Loss of SRIF and SRIF-expressing neurons in the brain rests at the center of a series of interdependent pathological events driven by amyloid- peptide (A), culminating in cognitive decline and dementia.
View Article and Find Full Text PDFBiomedicines
March 2024
Department of Histology and Embryology, University of Medical Sciences, Swiecicki Street 6, 60-781 Poznań, Poland.
Somatostatin, a somatotropin release inhibiting factor (SST, SRIF), is a widely distributed multifunctional cyclic peptide and acts through a transmembrane G protein-coupled receptor (SST1-SST5). Over the past decades, research has begun to reveal the molecular mechanisms underlying the anticancer activity of this hormonal peptide. Among gastrointestinal tract (GIT) tumors, direct and indirect antitumor effects of SST have been documented best in gastroenteropancreatic neuroendocrine tumors (GEP-NETs) and less well in non-endocrine cancers, including sporadic colorectal cancer (CRC).
View Article and Find Full Text PDFChemistry
June 2023
GlyTech, Inc., 134 Chudoji Minamimachi KRP #1-2F, Shimogyo-ku, Kyoto, 600-8813, Japan.
Somatostatin (somatotropin release-inhibiting factor, SRIF) is a growth hormone inhibitory factor in the form of a 14- or 28-amino acid peptide. SRIF affects several physiological functions through its action on five distinct SRIF receptor subtypes (sst1-5). Native SRIF has only limited clinical applications due to its rapid degradation in plasma.
View Article and Find Full Text PDFProg Mol Biol Transl Sci
February 2023
Université Paris Cité, NeuroDiderot, Inserm UMR, Paris, France. Electronic address:
Somatostatin (SRIF) is a neuropeptide that acts as an important regulator of both endocrine and exocrine secretion and modulates neurotransmission in the central nervous system (CNS). SRIF also regulates cell proliferation in normal tissues and tumors. The physiological actions of SRIF are mediated by a family of five G protein-coupled receptors, called somatostatin receptor (SST) SST, SST, SST, SST, SST.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!