Routing of membrane proteins to large dense core vesicles in PC12 cells.

J Mol Neurosci

Department of Neuroscience, University of Connecticut Health Center, Farmington 06030-3401, USA.

Published: November 2002

Routing of membrane proteins to large dense core vesicles in neuroendocrine cells can depend on information in both the lumenal and cytoplasmic domains. This study in PC12 cells focuses on the routing, cleavage, and secretion of an integral membrane protein, peptidylglycine alpha-amidating monooxygenase (PAM), examining both endogenous and virally derived membrane PAM. The role of the lumenal catalytic domains in membrane PAM trafficking was examined by replacement with an epitope tag. Virally derived membrane PAM is localized to the perinuclear area and to slender processes where the large dense core vesicles are located. Expression of PAM along with a neuroendocrine-specific endoprotease liberates a soluble monooxygenase domain, yielding regulated secretion of both the monooxygenase and the prohormone convertase from large dense core vesicles. The subcellular distribution of the epitope-substituted version of PAM within the cells is similar to that of membrane PAM, and both proteins are internalized from the plasma membrane. When secretion is stimulated, Serine937 in the cytoplasmic domain of PAM is phosphorylated to a similar extent in endogenous membrane PAM, virally encoded membrane PAM, and epitope-substituted PAM. Thus, the lumenal PAM catalytic domains are not required for routing or phosphorylation of PAM in PC12 cells.

Download full-text PDF

Source
http://dx.doi.org/10.1385/jmn:18:1-2:111DOI Listing

Publication Analysis

Top Keywords

membrane pam
24
large dense
16
dense core
16
core vesicles
16
pam
13
pc12 cells
12
membrane
9
routing membrane
8
membrane proteins
8
proteins large
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!