Analyses of transgene silencing phenomena in plants and other organisms have revealed the existence of epigenetic silencing mechanisms that are based on recognition of nucleic acid sequence homology at either the DNA or RNA level. Common triggers of homology-dependent gene silencing include inverted DNA repeats and double-stranded RNA, a versatile silencing molecule that can induce both degradation of homologous RNA in the cytoplasm and methylation of homologous DNA sequences in the nucleus. Inverted repeats might be frequently associated with silencing because they can potentially interact in cis and in trans to trigger DNA methylation via homologous DNA pairing, or they can be transcribed to produce double-stranded RNA. Homology-dependent gene silencing mechanisms are ideally suited for countering natural parasitic sequences such as transposable elements and viruses, which are usually present in multiple copies and/or produce double-stranded RNA during replication. These silencing mechanisms can thus be regarded as host defense strategies to foreign or invasive nucleic acids. The high content of transposable elements and, in some cases, endogenous viruses in many plant genomes suggests that host defenses do not always prevail over invasive sequences. During evolution, slightly faulty genome defense responses probably allowed transposable elements and viral sequences to accumulate gradually in host chromosomes and to invade host genes. Possible beneficial consequences of this "foreign" DNA buildup include the establishment of genome defense-derived epigenetic control mechanisms for regulating host gene expression and acquired hereditary immunity to some viruses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0065-2660(02)46009-9 | DOI Listing |
bioRxiv
January 2025
Department of Genome Sciences, University of Washington, Seattle, WA, USA.
Adeno-associated viruses (AAVs) have emerged as the foremost gene therapy delivery vehicles due to their versatility, durability, and safety profile. Here we demonstrate extensive chimerism, manifesting as pervasive barcode swapping, among complex AAV libraries that are packaged as a pool. The observed chimerism is length- and homology-dependent but capsid-independent, in some cases affecting the majority of packaged AAV genomes.
View Article and Find Full Text PDFCells
December 2024
Department of Orthopedics and Trauma Surgery, University Hospital Bonn, 53127 Bonn, Germany.
Inflammation models with the proinflammatory cytokine interleukin-1β (IL-1β) are widely used in the in vitro investigation of new therapeutic approaches for osteoarthritis (OA). The aim of this study was to systematically analyze the influence of IL-1β in a 3D chondral pellet culture model. Bovine articular chondrocytes were cultured to passage 3 and then placed in pellet culture.
View Article and Find Full Text PDFGenome Res
January 2025
Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany.
All forms of genetic variation originate from new mutations, making it crucial to understand their rates and mechanisms. Here, we use long-read sequencing from Pacific Biosciences (PacBio) to investigate de novo mutations that accumulated in 12 inbred mouse lines derived from three commonly used inbred strains (C3H, C57BL/6, and FVB) maintained for 8 to 15 generations in a mutation accumulation (MA) experiment. We built chromosome-level genome assemblies based on the MA line founders' genomes and then employed a combination of read and assembly-based methods to call the complete spectrum of new mutations.
View Article and Find Full Text PDFNat Commun
June 2024
Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, Yokohama, 236-0027, Japan.
Homology-dependent targeted DNA integration, generally referred to as gene targeting, provides a powerful tool for precise genome modification; however, its fundamental mechanisms remain poorly understood in human cells. Here we reveal a noncanonical gene targeting mechanism that does not rely on the homologous recombination (HR) protein Rad51. This mechanism is suppressed by Rad52 inhibition, suggesting the involvement of single-strand annealing (SSA).
View Article and Find Full Text PDFNucleic Acids Res
June 2024
Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara City, Nara 631-8505, Japan.
RAD51 filament is crucial for the homology-dependent repair of DNA double-strand breaks and stalled DNA replication fork protection. Positive and negative regulators control RAD51 filament assembly and disassembly. RAD51 is vital for genome integrity but excessive accumulation of RAD51 on chromatin causes genome instability and growth defects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!