We present a comprehensive study of the partially reduced polyoxomolybdate [H3-Mo57V6(NO)6O183(H2O)18]21-encapsulated in a shell of dimethyldioctadecylammonium (DODA) surfacmolecules. Treatment of an aqueous solution of (NH4)21[H3Mo57V6-(NO)6O183(H2O)18] . 65H2O (1a) with a trichloromethane solution of the surfactant leads to instant transfer of the encapsulated complex anion into the organic phase. Results from vibrational spectroscopy. analytical ultracentrifugation, small-angle X-ray scattering, transmission electron microscopy, elemental analysis, and Langmuir compression isotherms are consistent with a single polyoxometalate core encapsulated within a shell of 20 DODA molecules. The molar mass of the supramolecular assembly is 20249 gmol(-1) and the diameter is 3.5 nm. A material with the empirical formula (DODA)20(NH4)[H3-Mo57V6NO)6O183(H2O)18] (2) was isolated as a dark violet solid, which readily dissolves in organic solvents. Slow evaporation of solutions of 2 on solid substrates forces the hydrophobic particles to aggregate into a cubic lattice. Annealing these so-formed films at elevated temperature causes de-wetting with terrace formation similar to liquid crystals and block copolymers. Compound 2 forms a stable Langmuir monolayer at the air-water interface; Langmuir-Blodgett multilayers are readily prepared by repeated transfer of monolayers on solid substrates. The films were characterized by optical ellipsometry, Brewster angle microscopy, transmission electron microscopy, and X-ray reflectance.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(SICI)1521-3765(20000117)6:2<385::AID-CHEM385>3.0.CO;2-ADOI Listing

Publication Analysis

Top Keywords

transmission electron
8
electron microscopy
8
solid substrates
8
surfactant-encapsulated clusters
4
clusters secs
4
secs doda20nh4[h3mo57v6no6o183h2o18]
4
doda20nh4[h3mo57v6no6o183h2o18] case
4
case study
4
study comprehensive
4
comprehensive study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!