The haematopoietic tissue (HPT) of the black tiger shrimp (Penaeus monodon) is located in different areas in the cephalothorax, mainly at the dorsal side of the stomach and in the onset of the maxillipeds and, to a lesser extent, towards the antennal gland. In young and in experimentally stimulated animals, the HPT is expanded in relatively larger and more numerous lobules throughout the cephalothorax. Four cell types could be identified in the HPT by electron microscopy. The type 1 cells are the presumed precursor cells that give rise to a large- and a small-granular young haemocyte, denominated as the type 2 and type 3 cells, respectively. A gradient of maturation from the type 1 towards the type 2 or 3 cells could frequently be observed. The presumed precursor cells are located towards the exterior of the lobules and maturing young haemocytes towards the inner part, where they can be released into the haemal lacunae. The type 4 cells show typical features of interstitial cells. Different stimulation experiments were carried out and various techniques were used to study the HPT in relation to the (circulating) haemocytes. The majority of the cells in the HPT are able to proliferate and proliferation can be increased significantly after the injection of saline and, to a much higher extent, after LPS injection. The circulating haemocytes of crustaceans are generally divided into hyaline (H), semigranular (SG) or granular (G) cells, of which large- and small-granular variants of each of these were suggested in the present study. Even after stimulation in this study, the circulating haemocytes scarcely divide. The high variations that were found in the total haemocyte count in the stimulation experiments were not accompanied by significant differences in differential haemocyte count and, therefore, appeared to be a less useful indicator of stress or health in P. monodon. Light and electron microscopical observations support the regulation of the populations of the different haemocyte types in the circulation by (stored) haemocytes from the connective tissue. In conclusion, according to morphological and immuno-chemical criteria, it is proposed in the present study to divide the haemocytes into a large-and a small-granular developmental series. After extensive morphological observations, it is suggested that the hyaline cells are the young and immature haemocytes of both the large- and small-granular cell line that are produced in the HPT, and can be released into the haemolymph. Indications were found that the granular cells, of at least the large-granular cell line, mature and accumulate in the connective tissue and are easily released into the haemolymph. Combining the results of the present study with literature, this proposed model for haemocyte proliferation, maturation and reaction will be discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/fsim.2001.0369 | DOI Listing |
Sci Rep
December 2024
Laboratory of Cell Vaccine, Microbial Research Center for Health and Medicine (MRCHM), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki-Shi, Osaka, 567-0085, Japan.
Since designer cells are attracting much attention as a new modality in gene and cell therapy, it would be advantageous to develop synthetic receptors that recognize artificial ligands and activate solely signaling molecules of interest. In this study, we refined the construction of our previously developed minimal engineered receptors (MERs) to avoid off-target activation of STAT5 while maintaining on-target activation of signaling molecules corresponding to tyrosine motifs. Among the myristoylated, cytoplasmic, and transmembrane types of MERs, the cytoplasmic type had the highest signaling efficiency, although there was off-target activation of STAT5 upon ligand stimulation.
View Article and Find Full Text PDFNat Commun
December 2024
Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
Marine cyclopianes are a family of diterpenoid with novel carbon skeleton and diverse biological activities. Herein, we report our synthetic and chemical proteomics studies of cyclopiane diterpenes which culminate in the asymmetric total synthesis of conidiogenones C, K and 12β-hydroxy conidiogenone C, and identification of Immunity-related GTPase family M protein 1 (IRGM1) as a cellular target. Our asymmetric synthesis commences from Wieland-Miescher ketone and features a sequential intramolecular Pauson-Khand reaction and gold-catalyzed Nazarov cyclization to rapidly construct the 6-5-5-5 tetracyclic skeleton.
View Article and Find Full Text PDFNat Commun
December 2024
Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian, China.
Highly efficient perovskite solar cells (PSCs) in the n-i-p structure have demonstrated limited operational lifetimes, primarily due to the layer-to-layer ion diffusion in the perovskite/doped hole-transport layer (HTL) heterojunction, leading to conductivity drop in HTL and component loss in perovskite. Herein, we introduce an ultrathin (~7 nm) p-type polymeric interlayer (D18) with excellent ion-blocking ability between perovskite and HTL to address these issues. The ultrathin D18 interlayer effectively inhibits the layer-to-layer diffusion of lithium, methylammonium, formamidium, and iodide ions.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.
Programmable and modular systems capable of orthogonal genomic and transcriptomic perturbations are crucial for biological research and treating human genetic diseases. Here, we present the minimal versatile genetic perturbation technology (mvGPT), a flexible toolkit designed for simultaneous and orthogonal gene editing, activation, and repression in human cells. The mvGPT combines an engineered compact prime editor (PE), a fusion activator MS2-p65-HSF1 (MPH), and a drive-and-process multiplex array that produces RNAs tailored to different types of genetic perturbation.
View Article and Find Full Text PDFRedox Rep
December 2025
Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China.
Objectives: Bone remodeling imbalance contributes to osteoporosis. Though current medications enhance osteoblast involvement in bone formation, the underlying pathways remain unclear. This study was aimed to explore the pathways involved in bone formation by osteoblasts, we investigate the protective role of glycolysis and N6-methyladenosine methylation (m6A) against oxidative stress-induced impairment of osteogenesis in MC3T3-E1 cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!