Applications of Kalman filtering to real-time trace gas concentration measurements.

Appl Phys B

Rice Quantum Institute, Rice University, Houston, TX 77251-1892, USA.

Published: January 2002

A Kalman filtering technique is applied to the simultaneous detection of NH3 and CO2 with a diode-laser-based sensor operating at 1.53 micrometers. This technique is developed for improving the sensitivity and precision of trace gas concentration levels based on direct overtone laser absorption spectroscopy in the presence of various sensor noise sources. Filter performance is demonstrated to be adaptive to real-time noise and data statistics. Additionally, filter operation is successfully performed with dynamic ranges differing by three orders of magnitude. Details of Kalman filter theory applied to the acquired spectroscopic data are discussed. The effectiveness of this technique is evaluated by performing NH3 and CO2 concentration measurements and utilizing it to monitor varying ammonia and carbon dioxide levels in a bioreactor for water reprocessing, located at the NASA-Johnson Space Center. Results indicate a sensitivity enhancement of six times, in terms of improved minimum detectable absorption by the gas sensor.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s003400100751DOI Listing

Publication Analysis

Top Keywords

kalman filtering
8
trace gas
8
gas concentration
8
concentration measurements
8
nh3 co2
8
applications kalman
4
filtering real-time
4
real-time trace
4
measurements kalman
4
filtering technique
4

Similar Publications

State estimation for large-scale non-Gaussian dynamic systems remains an unresolved issue, given nonscalability of the existing particle filter algorithms. To address this issue, this paper extends the Langevinized ensemble Kalman filter (LEnKF) algorithm to non-Gaussian dynamic systems by introducing a latent Gaussian measurement variable to the dynamic system. The extended LEnKF algorithm can converge to the right filtering distribution as the number of stages become large, while inheriting the scalability of the LEnKF algorithm with respect to the sample size and state dimension.

View Article and Find Full Text PDF

To enhance the positioning accuracy of autonomous underwater vehicles (AUVs), a new adaptive filtering algorithm (RHAUKF) is proposed. The most widely used filtering algorithm is the traditional Unscented Kalman Filter or the Adaptive Robust UKF (ARUKF). Excessive noise interference may cause a decrease in filtering accuracy and is highly likely to result in divergence by means of the traditional Unscented Kalman Filter, resulting in an increase in uncertainty factors during submersible mission execution.

View Article and Find Full Text PDF

Topography estimation is essential for autonomous off-road navigation. Common methods rely on point cloud data from, e.g.

View Article and Find Full Text PDF

This paper presents a comparative study of different AI models for indoor positioning systems, emphasizing improvements in localization accuracy and processing time. This study examines Artificial Neural Networks (ANNs), Long Short-Term Memory (LSTM), Recurrent Neural Networks (RNNs), and the Kalman filter using a real Received Signal Strength Indicator (RSSI) and 9-axis ICM-20948 sensor. An in-depth analysis is provided in this paper for data cleaning and feature selection to reduce errors for all the models.

View Article and Find Full Text PDF

This paper proposes a hierarchical framework-based solution to address the challenges of vehicle state estimation and lateral stability control in four-wheel independent drive electric vehicles. First, based on a three-degrees-of-freedom four-wheel vehicle model combined with the Magic Formula Tire model (MF-T), a hierarchical estimation method is designed. The upper layer employs the Kalman Filter (KF) and Extended Kalman Filter (EKF) to estimate the vertical load of the wheels, while the lower layer utilizes EKF in conjunction with the upper-layer results to further estimate the lateral forces, longitudinal velocity, and lateral velocity, achieving accurate vehicle state estimation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!