We examined the role of main and external cuneate nuclei neurons in processing sensory information during forelimb passive movement. We recorded activity of neurons using circular and figure-eight trajectories, at different speeds, in anaesthetized rats. A multivariate regression analysis was performed to correlate neural discharge to movement direction and speed, the two components of the velocity vector. We found that the activity of the majority of cuneate neurons related to passive movement velocity and that the directional component of the velocity vector accounted for a larger fraction of the variability in the firing rate than the scalar component (speed). These results indicate that cuneate cells can process whole limb afferent information to elaborate a representation of the movement velocity vector.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00001756-200203040-00004 | DOI Listing |
Jpn J Ophthalmol
January 2025
Department of Neurology, Yokohama Brain and Spine Center, Yokohama, Japan.
Purpose: To assess the effects of modifying head position and of static ocular counter-rolling (OCR) on abduction and adduction in saccadic eye movements using a head-mounted video-oculographic device.
Study Design: A clinical observational study.
Methods: The peak velocities and amplitude gains of visually guided 12° saccades were binocularly measured in 21 healthy volunteers with their heads in the upright vertical (0°) and horizontal (± 90°, bilateral side-lying) postures, and in 6 participants with their head positions bilaterally tilted by 30°.
Phys Med Biol
January 2025
Washington University in Saint Louis, 1 Brooking Dr., Saint Louis, Missouri, 63130, UNITED STATES.
This paper introduces a novel unsupervised inverse-consistent diffeomorphic registration network termed IConDiffNet, which incorporates an energy constraint that minimizes the total energy expended during the deformation process. The IConDiffNet architecture consists of two symmetric paths, each employing multiple recursive cascaded updating blocks (neural networks) to handle different virtual time steps parameterizing the path from the initial undeformed image to the final deformation. These blocks estimate velocities corresponding to specific time steps, generating a series of smooth time-dependent velocity vector fields.
View Article and Find Full Text PDFNoncontact injuries are prevalent among professional football players. Yet, most research on this topic is retrospective, focusing solely on statistical correlations between Global Positioning System (GPS) metrics and injury occurrence, overlooking the multifactorial nature of injuries. This study introduces an automated injury identification and prediction approach using machine learning, leveraging GPS data and player-specific parameters.
View Article and Find Full Text PDFJASA Express Lett
January 2025
College of Information and Communication Engineering, Harbin Engineering University, Harbin, 150006, China.
A modified adaptive Kalman filter (AKF) algorithm is proposed to make underwater multi-target tracking with uncertain measurement noise reliable. By utilizing the proposed AKF algorithm with three core points, including an adaptive fading factor, measurement noise covariance adjustment, and an adaptive weighting factor, the unknown measurement noise and state vector can be estimated with good accuracy and robustness. The practical trial data verify this algorithm, and it has proven superior to all traditional algorithms in this Letter based on the results that it reduces the estimated position RMSEs by at least 10.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Lin'an 311300, China.
As a member of the chalcogenide family, NiSe exhibits a direct bandgap of 1.74 eV, making it a promising candidate for nonlinear optical devices. However, its potential in the near-infrared region of the telecommunication band has not been fully explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!