Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired hematopoietic stem cell disorder characterized by clonal blood cells that are deficient in glycosylphosphatidylinositol-anchored proteins because of somatic mutations of the PIG-A gene. Many patients with PNH have more than one PNH clone, but it is unclear whether a single PNH clone remains dominant or minor clones eventually become dominant. Furthermore, it is unknown how many hematopoietic stem cells (HSCs) sustain hematopoiesis and how long a single HSC can support hematopoiesis in humans. To understand dynamics of HSCs, we reanalyzed the PIG-A gene mutations in 9 patients 6 to 10 years after the previous analyses. The proportion of affected peripheral blood polymorphonuclear cells (PMNs) in each patient was highly variable; it increased in 2 (from 50% and 65% to 98% and 97%, respectively), was stable in 4 (changed less than 20%), and diminished in 3 (94%, 99%, and 98% to 33%, 57%, and 43%, respectively) patients. The complexity of these results reflects the high variability of the clinical course of PNH. In all patients, the previously predominant clone was still present and dominant. Therefore, one stem cell clone can sustain hematopoiesis for 6 to 10 years in patients with PNH. Two patients whose affected PMNs decreased because of a decline of the predominant PNH clone and who have been followed up for 24 and 31 years now have an aplastic condition, suggesting that aplasia is a terminal feature of PNH.

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood.v99.8.2748DOI Listing

Publication Analysis

Top Keywords

stem cell
12
pnh clone
12
support hematopoiesis
8
cell clone
8
paroxysmal nocturnal
8
nocturnal hemoglobinuria
8
pnh
8
hematopoietic stem
8
pig-a gene
8
patients pnh
8

Similar Publications

Background: Early neurological deterioration (END) is a critical determinant influencing the short-term prognosis of acute ischemic stroke (AIS) patients and is associated with increased mortality rates among hospitalized individuals. AIS frequently coexists with coronary heart disease (CHD), complicating treatment and leading to more severe symptoms and worse outcomes. Shared risk factors between CHD and AIS, especially elevated low-density lipoprotein cholesterol (LDL-C), contribute to atherosclerosis and inflammation, which worsen brain tissue damage.

View Article and Find Full Text PDF

Comprehensive analysis of scRNA-seq and bulk RNA-seq reveals the non-cardiomyocytes heterogeneity and novel cell populations in dilated cardiomyopathy.

J Transl Med

January 2025

State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China.

Background: Dilated cardiomyopathy (DCM) is one of the most common causes of heart failure. Infiltration and alterations in non-cardiomyocytes of the human heart involve crucially in the occurrence of DCM and associated immunotherapeutic approaches.

Methods: We constructed a single-cell transcriptional atlas of DCM and normal patients.

View Article and Find Full Text PDF

Huntington's disease (HD) is caused by a CAG repeat expansion in the HTT gene, leading to altered gene expression. However, the mechanisms leading to disrupted RNA processing in HD remain unclear. Here we identify TDP-43 and the N6-methyladenosine (m6A) writer protein METTL3 to be upstream regulators of exon skipping in multiple HD systems.

View Article and Find Full Text PDF

Receptor Interacting Serine/Threonine Kinase 1 (RIPK1) is widely expressed and integral to inflammatory and cell death responses. Autosomal recessive RIPK1-deficiency, due to biallelic loss of function mutations in RIPK1, is a rare inborn error of immunity (IEI) resulting in uncontrolled necroptosis, apoptosis and inflammation. Although hematopoietic stem cell transplantation (HSCT) has been suggested as a potential curative therapy, the extent to which disease may be driven by extra-hematopoietic effects of RIPK1-deficiency, which are non-amenable to HSCT, is not clear.

View Article and Find Full Text PDF

DjsoxP-1 and Djsox5 are essential for tissue homeostasis and regeneration in Dugesia japonica.

Cell Tissue Res

January 2025

College of Life Science, Henan Normal University, No. 46, Jianshe Road, Xinxiang 453007, Henan, China.

Sox genes encode a family of transcription factors that regulate multiple biological processes during metazoan development, including embryogenesis, tissue homeostasis, nervous system specification, and stem cell maintenance. The planarian Dugesia japonica contains a reservoir of stem cells that grow and divide continuously to support cellular turnover. However, whether SOX proteins retain these conserved functions in planarians remains to be determined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!