Monascus purpureus CCRC31499 produced an antimicrobial chitinase when it was grown in a medium containing shrimp and crab shell powder (SCSP) of marine wastes. An extracellular antimicrobial chitinase was purified from the culture supernatant to homology. The chitinase had a molecular weight of approximately 81,000 and a pI of 5.4. The optimal pH, optimum temperature, and pH stability of the chitinase were pH 7, 40 degrees C, and pH 6-8, respectively. The activity of the chitinase was activated by Fe(2+) and strongly inhibited by Hg(2+). The unique characteristics of the purified chitinase include high molecular weight, nearly neutral optimum pH, protease activity, and antimicrobial activity with bacteria and fungal phytopathogens. This is also the first report of isolation of a chitinase from a Monascus species.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf011076xDOI Listing

Publication Analysis

Top Keywords

antimicrobial chitinase
12
chitinase
8
monascus purpureus
8
purpureus ccrc31499
8
shrimp crab
8
crab shell
8
shell powder
8
molecular weight
8
purification characterization
4
antimicrobial
4

Similar Publications

This study describes the applicability of the fluorescence polarization assay (FPA) based on the use of FITC-labeled oligosaccharide tracers of defined structure for the measurement of active lysozyme in hen egg white. Depending on the oligosaccharide chain length of the tracer, this method detects both the formation of the enzyme-to-tracer complex (because of lectin-like, i.e.

View Article and Find Full Text PDF

The L. genus, belonging to the Moraceae family, includes around 850 species that are widely distributed in tropical and subtropical regions around the world; including the Eastern Mediterranean, Asia, Africa, Australia, and a large territory of America. Among the most important species are , , , , , Vahl, , , , and .

View Article and Find Full Text PDF

Dissecting and optimizing bioactivities of chitosans by enzymatic modification.

Carbohydr Polym

February 2025

Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany. Electronic address:

Chitosans are versatile biopolymers with antimicrobial and plant-strengthening properties relevant to agriculture. However, a limited understanding of molecular structure-function relationships and cellular modes of action of chitosans hampers the development of effective chitosan-based agro-biologics. We partially hydrolyzed a chitosan polymer (degree of polymerization DP 800, fraction of acetylation F 0.

View Article and Find Full Text PDF
Article Synopsis
  • * The isolates were found to have beneficial traits for plants, such as producing growth-promoting compounds and enzymes, and showed antagonistic activity against certain fungal pathogens.
  • * Selected isolates, specifically GU1, GU6, GU7, and GU18, not only enhanced growth in licorice plants but also effectively colonized their roots, suggesting their potential use as bioinoculants for agricultural purposes.
View Article and Find Full Text PDF

Characterization of the chitinase gene family in Saccharum reveals the disease resistance mechanism of ScChiVII1.

Plant Cell Rep

December 2024

Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.

Article Synopsis
  • The study characterizes the ScChiVII1 gene in sugarcane, which is important for defending against pathogens by breaking down chitin, crucial for the survival of certain diseases.
  • Researchers identified 85 SsChi and 23 ShChi chitinase genes from wild and cultivated sugarcane, finding that these genes can respond to smut pathogen stress.
  • Transgenic Nicotiana benthamiana plants overexpressing ScChiVII1 showed increased disease resistance by enhancing specific biochemical activities and pathways related to plant defense after infection.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!