The synthesis, characterization and biological application of mannose encapsulated gold nanoparticles (m-AuNP) are reported. m-AuNP is well dispersed and very stable without aggregation in the media of broad ion strength and pH ranges. The selective binding of m-AuNP to the mannose adhesin FimH of bacterial type 1 pili is demonstrated using transmission electron microscopy. The competition assay with free mannose suggests that m-AuNP binds FimH better than free mannose does. This work demonstrates that carbohydrate attached nanoparticles can be used as an efficient affinity label and a multi-ligand carrier in a biological system.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja0200903DOI Listing

Publication Analysis

Top Keywords

selective binding
8
gold nanoparticles
8
type pili
8
free mannose
8
binding mannose-encapsulated
4
mannose-encapsulated gold
4
nanoparticles type
4
pili escherichia
4
escherichia coli
4
coli synthesis
4

Similar Publications

The thiol-ene reaction between an alkene and a thiol can be exploited for selective labelling of cysteine residues in protein profiling applications. Here, we explore thiol-ene activation in systems from chemical models to complex cellular milieus, using UV, visible wavelength and redox initiators. Initial studies in chemical models required an oxygen-free environment for efficient coupling and showed very poor activation when using a redox initiator.

View Article and Find Full Text PDF

During normal cellular homeostasis, unfolded and mislocalized proteins are recognized and removed, preventing the build-up of toxic byproducts. When protein homeostasis is perturbed during ageing, neurodegeneration or cellular stress, proteins can accumulate several forms of chemical damage through reactive metabolites. Such modifications have been proposed to trigger the selective removal of chemically marked proteins; however, identifying modifications that are sufficient to induce protein degradation has remained challenging.

View Article and Find Full Text PDF

MuSK regulates neuromuscular junction Nav1.4 localization and excitability.

J Neurosci

January 2025

Carney Institute for Brain Science, Brown University, Providence, RI 02912

The neuromuscular junction (NMJ) is the linchpin of nerve-evoked muscle contraction. Broadly, the function of the NMJ is to transduce nerve action potentials into muscle fiber action potentials (MFAPs). Efficient neuromuscular transmission requires both cholinergic signaling, responsible for generation of endplate potentials (EPPs), and excitation, the amplification of the EPP by postsynaptic voltage-gated sodium channels (Nav1.

View Article and Find Full Text PDF

Multiple gRNAs-assisted CRISPR/Cas12a-based portable aptasensor enabling glucometer readout for amplification-free and quantitative detection of malathion.

Anal Chim Acta

March 2025

College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China; Sichuan Province Key Laboratory of Natural Products and Small Molecule Synthesis, Leshan, Sichuan, 614000, PR China. Electronic address:

Background: The threat of toxic malathion residues to human health has always been a serious food safety issue. The CRISPR/Cas system represents an innovative detection technology for pesticide residues, but its application to malathion detection has not been reported yet. In addition, the multiple-guide RNA (gRNA) powered-CRISPR/Cas biosensor has the advantages of being fast, sensitive and does not require pre-amplification.

View Article and Find Full Text PDF

Augmented silver sulfadiazine nanostructured lipid carriers impregnated collagen sponge for promoting burn wound healing.

Int J Biol Macromol

January 2025

Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, P.O. Box 32897, Menoufia, Egypt; Nanomedicine Laboratory, Faculty of Pharmacy, University of Sadat City, P.O. Box 32897, Sadat City, Egypt. Electronic address:

Silver sulfadiazine (SSD) is a widely used antibacterial agent for burn wound treatment owing to its capability in re-epithelialization and wound healing. However, due to its low solubility, the need for an effective drug delivery system is mandatory. This study aimed to optimize SSD nanostructured lipid-based carriers (NLCs), incorporated in a collagen sponge form as an innovative topical dosage form for effective burn wound treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!