The structure of Sc3N@C80-C10H12O2, a Diels-Alder cycloadduct of Sc3N@C80, has been determined. The crystallographic data shows that cycloaddition occurs at a C-C bond of 6:5 ring junction, and that the fullerene C1-C2 bond is elongated and pulled out from the fullerene. The Sc3N unit is well-ordered within the C80 cage and positioned away from the site of addition. The proximity of the Sc atoms to the cage carbon atoms causes those carbon atoms to protrude slightly from the surface of the fullerene cage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja020065x | DOI Listing |
Nat Commun
December 2024
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China.
Carbon nanomaterials show outstanding promise as electrocatalysts for hydrogen peroxide (HO) synthesis via the two-electron oxygen reduction reaction. However, carbon-based electrocatalysts that are capable of generating HO at industrial-level current densities (>300 mA cm) with high selectivity and long-term stability remain to be discovered. Herein, few-layer boron nanosheets are in-situ introduced into a porous carbon matrix, creating a metal-free electrocatalyst (B-C) with HO production rates of industrial relevance in neutral or alkaline media.
View Article and Find Full Text PDFChemistry
December 2024
Université de Liège: Universite de Liege, Laboratory of Organometallic Chemistry and Homogeneous Catalysis, Institut de chimie B6a, Sart-Tilman, 4000, Liege, BELGIUM.
Thirteen imidazolium iodides bearing benzyl, mesityl, or 2,6-diiso-propyl-phenyl substituents on their nitrogen atoms, and C1 to C4 alkyl chains on their C2 carbon atom were readily deuterated with D2O as a cheap and non-toxic deuterium source in the presence of Cs2CO3, a weak, innocuous, inorganic base. The isotopic exchange proceeded quickly and efficiently under mild, aerobic conditions to afford a range of aNHC and NHO precursors regioselectively labeled on their C2α exocyclic position and/or C4=C5 heterocyclic backbone. A "carbene-free" mechanism was postulated, in which the carbonate anion acts as a catalyst to activate an exocyclic, acidic C-H bond and ease a deuterium transfer from D2O to the imidazolium salt in a concerted fashion.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Materials Science and Engineering, Hanbat National University, Daejeon 34158, Republic of Korea.
Ultrasmall-scale semiconductor devices (≤5 nm) are advancing technologies, such as artificial intelligence and the Internet of Things. However, the further scaling of these devices poses critical challenges, such as interface properties and oxide quality, particularly at the high-/semiconductor interface in metal-oxide-semiconductor (MOS) devices. Existing interlayer (IL) methods, typically exceeding 1 nm thickness, are unsuitable for ultrasmall-scale devices.
View Article and Find Full Text PDFJ Org Chem
December 2024
Aix-Marseille Université, CNRS UMR 7325 Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Campus de Luminy, Marseille cedex 09 13288, France.
The one-pot transamination reactions on a zwitterionic benzoquinonemonoimine yield either a quinoxaline derivative or bis-zwitterionic macrocycles, depending on the number of carbon atoms bridging primary polyamines. These latter products, featuring two confined donor cavities, are the result of a [2 + 2] condensation without the need for template effect or high dilution conditions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
University of Chicago Division of the Physical Sciences, Chemistry, 929 E 57th St, Gordon Center for Integrative Science, 60637, Chicago, UNITED STATES OF AMERICA.
Intrinsic structural and oxidic defects activate graphitic carbon electrodes towards electrochemical reactions underpinning energy conversion and storage technologies. Yet, these defects can also disrupt the long-range and periodic arrangement of carbon atoms, and thus the characterization of graphitic carbon electrodes necessitate in-situ atomistic differentiation of graphitic regions from mesoscopic bulk disorder. Here, we leverage the combined techniques of in-situ attenuated total reflectance infrared spectroscopy and first-principles calculations to reveal that graphitic carbon electrodes exhibit electric-field dependent infrared activity that is sensitive to the bulk mesoscopic intrinsic disorder.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!