Duchenne muscular dystrophy is an X-linked disease of muscle caused by an absence of the protein dystrophin. Affected boys begin manifesting signs of disease early in life, cease walking at the beginning of the second decade, and usually die by age 20 years. Until treatment of the basic genetic defect is available, medical, surgical, and rehabilitative approaches can be used to maintain patient function and comfort. Corticosteroids, including prednisone and a related compound, deflazacort, have recently been shown to markedly delay the loss of muscle strength and function in boys with Duchenne muscular dystrophy. Surgical release of lower extremity contractures may benefit some patients. Approximately 90% of boys with Duchenne muscular dystrophy will develop severe scoliosis, which is not amenable to control by nonsurgical means such as bracing or adaptive seating. The most effective treatment for severe scoliosis is prevention by intervening with early spinal fusion utilizing segmental instrumentation as soon as curves are ascertained and before the onset of severe pulmonary or cardiac dysfunction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5435/00124635-200203000-00009 | DOI Listing |
Brain Behav Immun Health
February 2025
Department of Physiology, School of Medicine, University College Cork, Western Road, Cork, Ireland.
Duchenne muscular dystrophy (DMD), an X-linked neuromuscular disorder, characterised by progressive immobility, chronic inflammation and premature death, is caused by the loss of the mechano-transducing signalling molecule, dystrophin. In non-contracting cells, such as neurons, dystrophin is likely to have a functional role in synaptic plasticity, anchoring post-synaptic receptors. Dystrophin-expressing hippocampal neurons are key to cognitive functions such as emotions, learning and the consolidation of memories.
View Article and Find Full Text PDFSci Rep
January 2025
Graduate Course in Medicine (Pathological Anatomy), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
Muscular dystrophies (MD) are a group of hereditary diseases marked by progressive muscle loss, leading to weakness and degeneration of skeletal muscles. These conditions often result from structural defects in the Dystrophin-Glycoprotein Complex (DGC), as seen in Duchenne Muscular Dystrophy (DMD) and Becker Muscular Dystrophy (BMD). Since MDs currently have no cure, research has focused on identifying potential therapeutic targets to improve patients' quality of life.
View Article and Find Full Text PDFBone
January 2025
Department of Paediatric Endocrinology, Royal Hospital for Children, Glasgow, United Kingdom; School of Medicine, Dentistry & Nursing, University of Glasgow, United Kingdom. Electronic address:
Background: Long term glucocorticoid treatment in Duchenne Muscular Dystrophy (DMD) is associated with a high incidence of fragility fractures. This systematic review aims to assess the current evidence for pharmacological and non-pharmacological treatment for osteoporosis in children and adults with DMD.
Methods: Three online databases (Embase, Medline, Cochrane Library) were searched for studies that evaluated interventions for treatment or prevention of osteoporosis in DMD.
J Neuroeng Rehabil
January 2025
Department of BioMechanical Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, South-Holland, The Netherlands.
Duchenne Muscular Dystrophy (DMD) progressively leads to loss of limb function due to muscle weakness. The incurable nature of the disease shifts the focus to improving quality of life, including assistive supports to improve arm function. Over time, the passive joint impedance (Jimp) of people with DMD increases.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark.
microRNA-22 (miR-22) plays a pivotal role in the regulation of metabolic processes and has emerged as a therapeutic target in metabolic disorders, including obesity, type 2 diabetes, and metabolic-associated liver diseases. While miR-22 exhibits context-dependent effects, promoting or inhibiting metabolic pathways depending on tissue and condition, current research highlights its therapeutic potential, particularly through inhibition strategies using chemically modified antisense oligonucleotides. This review examines the dual regulatory functions of miR-22 across key metabolic pathways, offering perspectives on its integration into next-generation diagnostic and therapeutic approaches while acknowledging the complexities of its roles in metabolic homeostasis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!