X-ray film has been used for the dosimetry of intensity modulated radiation therapy (IMRT). However, the over-response of the film to low-energy photons is a significant problem in photon beam dosimetry, especially in regions outside penumbra. In IMRT, the radiation field consists of multiple small fields and their outside-penumbra regions; thus, the film dosimetry, for it involves the source of over-response in its radiation field. In this study we aim to verify and possibly improve film dosimetry for IMRT. Two types of modulated beams were constructed by combining five to seven different static radiation fields using 6 MV x rays. For verifying film dosimetry, x-ray films and an ion chamber were used to measure dose profiles at various depths in a phantom. The film setups include both parallel and perpendicular arrangements against the beam incident direction. In addition, to reduce an over-response, we placed 0.01 in. (0.25 mm) thick lead filters on both sides of the film. Compared with ion-chamber measurement, measured dose profiles showed the film over-response at outside-penumbra and low-dose regions. The error increased with depths and approached 15% as a maximum for the field size of 15 cm x 15 cm at 10 cm depth. The use of filters reduced the error down to 3%. In this study we demonstrated that film dosimetry for IMRT involves sources of error due to its over-response to low-energy photons, with the error most transparent in the low-dose region. The use of filters could enhance the accuracy in film dosimetry for IMRT. In this regard, the use of an optimal filter condition is recommended.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1118/1.1449493 | DOI Listing |
Health Phys
January 2025
Department of Physics, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, M5B 2K3.
This study elucidated the radiation response characteristics of a Gafchromic radiochromic film subjected to low photon doses of ≤50 mSv, which corresponds to the annual whole body effective dose limit for radiation workers in Canada. Radiochromic films are investigated for possible use as a complementary tool for the Canadian Armed Forces that can be worn in addition to their existing personal dosimetry to quickly assess personal radiation dose received from radiological hazards without reliance on electronics. The films were exposed to varying photon energies emanating from x-ray generators and radioisotopes, specifically cesium-137, cobalt-60, and americium-241.
View Article and Find Full Text PDFMed Phys
January 2025
Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada.
Background: A stemless plastic scintillation detector (SPSD) is composed of an organic plastic scintillator coupled to an organic photodiode. Previous research has shown that SPSDs are ideally suited to challenging dosimetry measurements such as output factors and profiles in small fields. Lacking from the current literature is a systematic effort to optimize the performance of the photodiode component of the detector.
View Article and Find Full Text PDFFront Oncol
December 2024
Institute of Radiation Medicine (IRM), Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany.
Biomed Phys Eng Express
December 2024
Medical Physics Consultant, INTECNUS Foundation, RP82 8400, San Carlos de Bariloche, Río Negro, Argentina.
. To investigate the effect of the position and orientation of the detector and its influence on the determination of output factors (OF) for small fields for a linear accelerator (MR-linac) integrated with 1.5 T magnetic resonance following the TRS-483 formalism.
View Article and Find Full Text PDFPhys Med Biol
December 2024
Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States of America.
This study analyzed the spectral response of EBT3, EBT4, and EBT-XD radiochromic films using absorption spectroscopy. The primary focus was on characterizing the evolution of spectral signatures across a range of absorbed doses, thereby elucidating the unique dose-dependent response profiles of each film type. Ten samples of each film type were subjected to open field irradiation within their designated dose ranges (1-20 Gy for EBT3 and EBT4, 1-50 Gy for EBT-XD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!