Control of the propagation of dendritic low-threshold Ca(2+) spikes in Purkinje cells from rat cerebellar slice cultures.

J Physiol

Laboratoire de Neurotransmission et Sécrétion Neuroendocrine, CNRS UPR 2356, Centre de Neurochimie, 5 rue Blaise Pascal, F-67084 Strasbourg Cedex, France.

Published: April 2002

To investigate the ionic mechanisms controlling the dendrosomatic propagation of low-threshold Ca(2+) spikes (LTS) in Purkinje cells (PCs), somatically evoked discharges of action potentials (APs) were recorded under current-clamp conditions. The whole-cell configuration of the patch-clamp method was used in PCs from rat cerebellar slice cultures. Full blockade of the P/Q-type Ca(2+) current revealed slow but transient depolarizations associated with bursts of fast Na(+) APs. These can occur as a single isolated event at the onset of current injection, or repetitively (i.e. a slow complex burst). The initial transient depolarization was identified as an LTS Blockade of P/Q-type Ca(2+) channels increased the likelihood of recording Ca(2+) spikes at the soma by promoting dendrosomatic propagation. Slow rhythmic depolarizations shared several properties with the LTS (kinetics, activation/inactivation, calcium dependency and dendritic origin), suggesting that they correspond to repetitively activated dendritic LTS, which reach the soma when P/Q channels are blocked. Somatic LTS and slow complex burst activity were also induced by K(+) channel blockers such as TEA (2.5 x 10(-4) M) charybdotoxin (CTX, 10(-5) M), rIberiotoxin (10(-7) M), and 4-aminopyridine (4-AP, 10(-3) M), but not by apamin (10(-4) M). In the presence of 4-AP, slow complex burst activity occurred even at hyperpolarized potentials (-80 mV). In conclusion, we suggest that the propagation of dendritic LTS is controlled directly by 4-AP-sensitive K(+) channels, and indirectly modulated by activation of calcium-activated K(+) (BK) channels via P/Q-mediated Ca(2+) entry. The slow complex burst resembles strikingly the complex spike elicited by climbing fibre stimulation, and we therefore propose, as a hypothesis, that dendrosomatic propagation of the LTS could underlie the complex spike.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2290220PMC
http://dx.doi.org/10.1113/jphysiol.2001.013294DOI Listing

Publication Analysis

Top Keywords

slow complex
16
complex burst
16
ca2+ spikes
12
dendrosomatic propagation
12
propagation dendritic
8
low-threshold ca2+
8
purkinje cells
8
rat cerebellar
8
cerebellar slice
8
slice cultures
8

Similar Publications

Process-based models for range dynamics are urgently needed due to increasing intensity of human-induced biodiversity change. Despite a few existing models that focus on demographic processes, their use remains limited compared to the widespread application of correlative approaches. This slow adoption is largely due to the challenges in calibrating biological parameters and the high computational demands for large-scale applications.

View Article and Find Full Text PDF

Photocrosslinkable hydrogels based on hyaluronic acid are promising biomaterials high in demand in tissue engineering. Typically, hydrogels are photocured under the action of UV or blue light strongly absorbed by biotissues, which limits prototyping under living organism conditions. To overcome this limitation, we propose the derivatives of well-known photosensitizers, namely chlorin , chlorin and phthalocyanine, as those for radical polymerization in the transparency window of biotissues.

View Article and Find Full Text PDF

Pretargeted Multimodal Tumor Imaging by Enzymatic Self-Immobilization Labeling and Bioorthogonal Reaction.

J Am Chem Soc

January 2025

State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China.

Covalent modification of cell membranes has shown promise for tumor imaging and therapy. However, existing membrane labeling techniques face challenges such as slow kinetics and poor selectivity for cancer cells, leading to off-target effects and suboptimal efficacy. Here, we present an enzyme-triggered self-immobilization labeling strategy, termed E-SIM, which enables rapid and selective labeling of tumor cell membranes with bioorthogonal trans-cycloctene (TCO) handles .

View Article and Find Full Text PDF

5-Methylcytosine-modified circRNA-CCNL2 regulates vascular remdeling in hypoxic pulmonary hypertension through binding to FXR2.

Int J Biol Macromol

January 2025

Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin 150081, PR China; Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, Harbin 150081, PR China. Electronic address:

Pulmonary hypertension (PH) is a malignant cardiovascular disease with a complex etiology. 5-Methylcytosine (m5C) is a post-transcriptional RNA modification identified in both stable and highly abundant RNAs, with a lower frequency of occurrence in circular RNAs (circRNAs). Nevertheless, the function of m5C-modified circRNAs in the pathogenesis of PH remains uncertain.

View Article and Find Full Text PDF

Design, optimization, and inference of biphasic decay of infectious virus particles.

J Theor Biol

January 2025

Department of Biology, University of Maryland, College Park, 20742, MD, USA; Institut de Biologie, Ecole Normale Superieure, Paris, 75005, France; School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332, GA, USA. Electronic address:

Virus population dynamics are driven by counter-balancing forces of production and loss. Whereas viral production arises from complex interactions with susceptible hosts, the loss of infectious virus particles is often approximated as a first-order kinetic process. As such, experimental protocols to measure infectious virus loss are not typically designed to identify non-exponential decay processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!