DNA topoisomerase (topo) II catalyses topological genomic changes essential for many DNA metabolic processes. It is also regarded as a structural component of the nuclear matrix in interphase and the mitotic chromosome scaffold. Mammals have two isoforms (alpha and beta) with similar properties in vitro. Here, we investigated their properties in living and proliferating cells, stably expressing biofluorescent chimera of the human isozymes. Topo IIalpha and IIbeta behaved similarly in interphase but differently in mitosis, where only topo IIalpha was chromosome associated to a major part. During interphase, both isozymes joined in nucleolar reassembly and accumulated in nucleoli, which seemed not to involve catalytic DNA turnover because treatment with teniposide (stabilizing covalent catalytic DNA intermediates of topo II) relocated the bulk of the enzymes from the nucleoli to nucleoplasmic granules. Photobleaching revealed that the entire complement of both isozymes was completely mobile and free to exchange between nuclear subcompartments in interphase. In chromosomes, topo IIalpha was also completely mobile and had a uniform distribution. However, hypotonic cell lysis triggered an axial pattern. These observations suggest that topo II is not an immobile, structural component of the chromosomal scaffold or the interphase karyoskeleton, but rather a dynamic interaction partner of such structures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2173268PMC
http://dx.doi.org/10.1083/jcb.200112023DOI Listing

Publication Analysis

Top Keywords

topo iialpha
12
iialpha iibeta
8
structural component
8
catalytic dna
8
completely mobile
8
topo
6
dna
5
interphase
5
dynamics human
4
human dna
4

Similar Publications

Background: Fagonia cretica L. (Family: Zygophyllaceae), is a wild shrub mostly found in Mediterranean districts and extensively used in folk medicine for a vast array of purposes such as antidiabetic and anticancer during the early stages. The goal of the current study was to validate the antioxidant, anti-inflammatory, and cytotoxic properties of Egyptian F.

View Article and Find Full Text PDF

Topoisomerase II (topo II) enzymes are essential enzymes known to resolve topological entanglements during DNA processing. Curiously, while yeast expresses a single topo II, humans express two topo II isozymes, topo IIα and topo IIβ, which share a similar catalytic domain but differ in their intrinsically disordered C-terminal domains (CTDs). During mitosis, topo IIα and condensin I constitute the most abundant chromosome scaffolding proteins essential for chromosome condensation.

View Article and Find Full Text PDF

Unveiling the potential of germinated black bean extracts: Targeting topoisomerase IIα through in silico and in vitro approaches.

Food Chem

February 2025

State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China. Electronic address:

This study investigates the potential of germinated black bean extracts (GBBE) to modulate the activity of topoisomerase IIα (topo IIα), a key enzyme involved in DNA replication and repair, particularly in triple-negative breast cancer (TNBC). Germination significantly elevated the polyphenolic content of black beans, thereby enhancing their antioxidant properties. Molecular docking studies demonstrated a strong interaction between GBBE and the active site of topo IIα, suggesting a possible mechanism for its inhibitory action.

View Article and Find Full Text PDF

The 4,6-substituted-1,3,5-triazin-2(1)-ones are promising inhibitors of human DNA topoisomerase IIα. To further develop this chemical class targeting the enzyme´s ATP binding site, the triazin-2(1)-one substitution position 6 was optimized. Inspired by binding of preclinical substituted 9-purine derivative, bicyclic substituents were incorporated at position 6 and the utility of this modification was validated by a combination of molecular simulations, dynamic pharmacophores, and free energy calculations.

View Article and Find Full Text PDF

Evaluation of doxorubicin and β-lapachone analogs as anticancer agents, a biological and computational study.

Chem Biol Drug Des

July 2024

División de Ciencias Naturales y Exactas, Departamento de Química, Universidad de Guanajuato, Guanajuato, Mexico.

We have conducted an experimental and computational evaluation of new doxorubicin (4a-c) and β-lapachone (5a-c) analogs. These novel anticancer analogs were previously synthesized, but had not been tested or characterized until now. We have evaluated their antiproliferative and DNA cleavage inhibition properties using breast (MCF-7 and MDA-MB-231) and prostate (PC3) cancer cell lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!