Background: The interaction between CD40 on antigen-presenting cells and CD40L on T cells is critical in allograft rejection. CD154 blockade suppresses allograft rejection, but the role of this pathway in allograft vasculopathy remains obscure.
Methods And Results: A vascularized murine heterotopic cardiac transplant model was used to test whether perioperative CD154 blockade suppresses allograft vasculopathy or whether long-term CD154 blockade is required to suppress allograft vasculopathy. Perioperative CD154 blockade consisted of MR1 given on days -1, 1, and 3; long-term blockade consisted of MR1 given on days -1, 1, and 3 and continued twice weekly for 8 weeks. Allografts treated with perioperative or long-term CD154 blockade survived indefinitely. Perioperative and long-term treatment with control antibody (Ha4/8) resulted in uniform early rejection. Perioperative CD154 blockade transiently reduced early T-cell and macrophage infiltration in parallel with a transient reduction in endothelial adhesion receptor expression. Although perioperative CD154 blockade prevented allograft failure, it did not reduce allograft vasculopathy; mean neointimal cross-sectional area in perioperative MR1-treated and Ha4/8-treated recipients was 43+/-7% and 50+/-12%, respectively (P=NS). In contrast, mean neointimal cross-sectional area in long-term, MR1-treated recipients was 19+/-3% (P<0.001 versus perioperative MR1). Long-term CD154 blockade also suppressed endothelial E-selectin, P-selectin, and intracellular adhesion molecule-1 expression and improved graft function 3.5-fold versus control (P<0.05).
Conclusions: These data show that perioperative CD154 blockade mitigates acute rejection but long-term CD154 blockade may result in decreased allograft endothelial activation and is required to suppress allograft arteriopathy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.cir.0000013022.11250.30 | DOI Listing |
Transplantation
January 2025
Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA.
Background: Long-term renal allograft acceptance has been achieved in macaques using a transient mixed hematopoetic chimerism protocol, but similar regimens have proven unsuccessful in heart allograft recipients unless a kidney transplant was performed simultaneously. Here, we test whether a modified protocol based on targeting CD154, CD2, and CD28 is sufficient to prolong heart allograft acceptance or promote the expansion of regulatory T cells.
Methods: Eight macaques underwent heterotopic allo-heart transplantation from major histocompatibility complex-mismatched donors.
Sci Transl Med
January 2025
Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.
Cancers (Basel)
December 2024
Centro di Riferimento Oncologico, Istituto di Ricovero e Cura a Carattere Scientifico, National Cancer Institute, 33081 Aviano, Italy.
The tumor necrosis factor (TNF) family, which includes 19 ligands and 29 receptors, influences cellular proliferation, differentiation, and apoptosis. The TNF family plays a crucial role in the pathogenesis of Hodgkin lymphoma (HL), particularly through its influence on the tumor microenvironment (TME). Hodgkin Reed-Sternberg (HRS) cells, the hallmark of classic HL (cHL), exhibit overexpression of TNF receptor family members such as CD30 and CD40.
View Article and Find Full Text PDFFront Immunol
November 2024
Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States.
Ther Drug Monit
February 2025
Department of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands ; and.
Purpose: In this review, the authors summarized the latest developments in costimulatory blockade to prevent rejection after solid organ transplantation (SOT) and discussed possibilities for future research and the need for therapeutic drug monitoring (TDM) of these agents.
Methods: Studies about costimulatory blockers in SOT in humans or animal transplant models in the past decade (2014-2024) were systematically reviewed in PubMed, European Union clinical trials (EudraCT), and ClinicalTrials.gov .
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!