Protective immunity against lethal HSV-1 challenge in mice by nucleic acid-based immunisation with herpes simplex virus type-1 genes specifying glycoproteins gB and gD.

J Med Microbiol

Department of Veterinary Microbiology and Parasitology, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, *Department of Biological Sciences, Southern University, Baton Rouge, LA 70813 and †Vaxcel, Norcross, GA, USA.

Published: April 2002

DNA-based vaccines were employed to assess protective immunity against herpes simplex virus in experimental infections of hairless (strain SKH1) and BALB/c mice. Mice were vaccinated with plasmids containing the herpes simplex virus type-1 (HSV-1) glycoprotein B (gB) or D (gD) genes under the human cytomegalovirus immediate-early promoter control. Vaccines were injected intramuscularly (i.m.) or intraperitoneally (i.p.) as purified DNA alone or as formulations supplemented with different non-ionic block copolymers. Antibody responses were assessed by immunofluorescence and radio-immunoprecipitation assays. Mice inoculated with either gB or gD plasmid, alone or with non-ionic block copolymers CRL 1029 and CRL 1190, produced high levels of antibodies specific for gB or gD. Three weeks after the last vaccination, mice were challenged with a clinical HSV-1 isolate (ABGK-1) by inoculation of a shaved and subsequently scarified area between the third and fourth lumbar vertebrae. Mice immunised with either gD or gB plasmid alone or mixed with copolymers were protected against lethal HSV-1 challenge when immunisation was performed via the i.m. route. Immunisations given via the i.p. route induced humoral responses in some mice and protected the animals against lethal HSV-1 challenge only when the formulations contained copolymers. The BALB/c mouse model was shown to be as good a model as the hairless mouse model.

Download full-text PDF

Source
http://dx.doi.org/10.1099/0022-1317-51-4-350DOI Listing

Publication Analysis

Top Keywords

lethal hsv-1
12
hsv-1 challenge
12
herpes simplex
12
simplex virus
12
protective immunity
8
virus type-1
8
non-ionic block
8
block copolymers
8
mouse model
8
mice
7

Similar Publications

Article Synopsis
  • Researchers successfully created an infectious clone of HSV-1 by assembling its genome from 11 cloned fragments in yeast using a method called transformation associated recombination.* -
  • They engineered mutations in five specific genes, which are important for the virus's structure and functionality, and discovered that certain combinations of these mutations led to "synthetic lethality," preventing the virus from replicating in specific cell lines.* -
  • The study focused on the mutations of the UL16 and UL21 genes, revealing that viruses lacking both proteins showed immature capsid structures unable to mature into infectious particles, highlighting their potential roles in virus assembly.*
View Article and Find Full Text PDF

Influenza virus is a major respiratory viral pathogen responsible for the deaths of hundreds of thousands worldwide each year. Current vaccines provide protection primarily by inducing strain-specific antibody responses with the requirement of a match between vaccine strains and circulating strains. It has been suggested that anti-influenza T-cell responses, in addition to antibody responses may provide the broadest protection against different flu strains.

View Article and Find Full Text PDF

Herpes simplex virus (HSV) vaccine development has been impeded by the absence of predictive preclinical models and defined correlates of immune protection. Prior candidates elicited neutralizing responses greater than natural infection but no antibody-dependent cellular cytotoxicity (ADCC) and failed to protect in clinical trials. Primary HSV infection also elicits only neutralizing responses, but ADCC and an expanded antigenic repertoire emerge over time.

View Article and Find Full Text PDF

Equine Herpesvirus Type 1 ORF76 Encoding US9 as a Neurovirulence Factor in the Mouse Infection Model.

Pathogens

October 2024

Department of Applied Veterinary Sciences, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.

Equine herpesvirus type 1 (EHV-1) causes rhinopneumonitis, abortion, and neurological outbreaks (equine herpesvirus myeloencephalopathy, EHM) in horses. EHV-1 also causes lethal encephalitis in small laboratory animals such as mice and hamsters experimentally. EHV-1 ORF76 is a homolog of HSV-1 US9, which is a herpesvirus kinase.

View Article and Find Full Text PDF

A drug repurposing screen identifies decitabine as an HSV-1 antiviral.

Microbiol Spectr

November 2024

The Department of Molecular Biology and Biochemistry, The University of California Irvine, Irvine, California, USA.

Unlabelled: Herpes simplex virus type 1 (HSV-1) is a highly prevalent human pathogen that causes a range of clinical manifestations, including oral and genital herpes, keratitis, encephalitis, and disseminated neonatal disease. Despite its significant health and economic burden, there is currently only a handful of approved antiviral drugs to treat HSV-1 infection. Acyclovir and its analogs are the first-line treatment, but resistance often arises during prolonged treatment periods, such as in immunocompromised patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!