Are hydrophobins and/or non-specific lipid transfer proteins responsible for gushing in beer? New hypotheses on the chemical nature of gushing inducing factors.

Z Naturforsch C J Biosci

Lehrstuhl für Phytopathologie, Labor für Biochemische Toxikologie, Technische Universität München, Freising-Weihenstephan, Germany.

Published: May 2002

Gushing of beer is characterised by the fact that immediately after opening a bottle a great number of fine bubbles are created throughout the volume of beer and ascend quickly under foam formation, which flows out of the bottle. This infuriating gushing phenomenon has been, and still is, a problem of world-wide importance to the brewing industry. It is generally assumed that the causes of malt-derived gushing are due to the use of "weathered" barley or wheat and the growth of moulds in the field, during storage and malting. We now develop a hypothesis connecting several lines of evidence from different laboratories. These results indicate that the fungal hydrophobins, hydrophobic components of conidiospores or aerial mycelia, are gushing-inducing factors. Furthermore, increased formation of ns-LTPs (non-specific lipid transfer proteins), synthesised in grains as response to fungal infection, and their modification during the brewing process may be responsible for malt-derived gushing.

Download full-text PDF

Source
http://dx.doi.org/10.1515/znc-2002-1-201DOI Listing

Publication Analysis

Top Keywords

non-specific lipid
8
lipid transfer
8
transfer proteins
8
malt-derived gushing
8
gushing
6
hydrophobins and/or
4
and/or non-specific
4
proteins responsible
4
responsible gushing
4
gushing beer?
4

Similar Publications

Comprehensive analysis of the LTPG gene family in willow: Identification, expression profiling, and stress response.

Int J Biol Macromol

January 2025

Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China. Electronic address:

The non-specific lipid-transfer proteins (LTPs), particularly the glycosylphosphatidylinositol (GPI)-anchored LTPs (LTPGs), play pivotal roles in various plant physiological functions, particularly in the context of environmental stress adaptation. Despite their importance, LTPGs in willow (Salix matsudana), an ecologically and economically important species, remains poorly understood. This study systematically identified and characterized 30 SmLTPGs in the S.

View Article and Find Full Text PDF

Non-specific Lipid Transfer proteins (nsLTPs) are relevant allergens of several pollens and plant foods. Sensitization to nsLTPs is not typical in our region. Still, it has become an increasingly common cause of IgE-mediated food allergies and food-induced anaphylaxis in Northern Europe in recent decades.

View Article and Find Full Text PDF

The human voltage-gated proton channel (H1) provides an efficient proton extrusion pathway from the cytoplasm contributing to the intracellular pH regulation and the oxidative burst. Although its pharmacological inhibition was previously shown to induce cell death in various cell types, no such effects have been examined in polarized macrophages albeit H1 was suggested to play important roles in these cells. This study highlights that 5-chloro-2-guanidinobenzimidazole (ClGBI), the most widely applied H1 inhibitor, reduces the viability of human THP-1-derived polarized macrophages at biologically relevant doses with M1 macrophages being the most, and M2 cells the least sensitive to this compound.

View Article and Find Full Text PDF

Effects of Saprolegnia parasitica on pathological damage and metabolism of Epithelioma papulosum cyprini cell.

Dev Comp Immunol

January 2025

National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China. Electronic address:

Saprolegniasis is a common fungal disease in aquaculture. It will form white flocculent hyphae on the skin of fish, and the hyphae may grow inward and penetrate into muscle tissue, which will reduce the immunity of the body and eventually lead to death. However, there are still some gaps in the mechanism of the fish body surface against the invasion of Saprolegnia.

View Article and Find Full Text PDF

Dilated cardiomyopathy (DCM), a form of non-ischaemic myocardial disease, is characterised by structural and functional cardiac abnormalities. As defined by the World Health Organisation, DCM constitutes a significant cardiac pathology, leading to increased morbidity and mortality due to complications such as heart failure and arrhythmias. The diagnostic process for DCM predominantly employs echocardiography and MRI, with biomarkers like NT-pro BNP and troponin providing supportive, yet non-specific, evidence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!