Background/objective: We assessed the metabolic and heart rate (HR) responses to a single session of circuit resistance training (CRT) in six subjects with complete paraplegia (T5-T12 levels) in order to determine the caloric cost of the exercise.

Methods: Subjects underwent isoinertial weight training exercises with interspersed periods of high-cadence, low-resistance arm ergometry (AE). Following protocol familiarization, subjects completed one session of CRT during which continuous monitoring of HR, oxygen uptake (VO2), and respiratory exchange ratio (RER = VCO2/VO2) was performed. Caloric cost was calculated from the exercise VO2 values across the CRT session. A peak arm exercise test allowed data to be expressed as percentages of peak VO2 and HR.

Results: Subjects displayed mean VO2 values of 11.6 +/- 2.4 ml/kg/min (mean +/- SD) and a mean HR of 136 +/- 17 beats/min across the CRT session, corresponding with 49.0% of peak VO2 and 76.8% of peak HR. The RER values ranged from 0.96 to 1.19 and averaged above unity throughout the CRT session.

Conclusion: Despite the modest absolute VO2 during exercise, CRT satisfies operational criteria developed for cardiorespiratory exercise prescriptions in persons without disability. The RER values recorded indicate that CRT is intense work that relies primarily on glycolytic metabolism.

Download full-text PDF

Source

Publication Analysis

Top Keywords

circuit resistance
8
resistance training
8
complete paraplegia
8
caloric cost
8
vo2 values
8
crt session
8
peak vo2
8
rer values
8
crt
7
vo2
6

Similar Publications

Precious metal-based single-atom catalysts (PM-SACs) hosted in N-doped carbon supports have shown new opportunities to revolutionize cathodic oxygen reduction reaction (ORR). However, stabilizing the high density of PM-N sites remains a challenge, primarily due to the inherently high free energy of isolated metal atoms, predisposing them to facile atomic agglomeration. Herein, a molten salt-assisted synthesis strategy is proposed to prepare porous PM/N-C (PM = Ru, Pt, and Pd) electrocatalysts with densely accessible PM-N sites.

View Article and Find Full Text PDF

Two-dimensional (2D) materials hold significant potential for the development of neuromorphic computing architectures owing to their exceptional electrical tunability, mechanical flexibility, and compatibility with heterointegration. However, the practical implementation of 2D memristors in neuromorphic computing is often hindered by the challenges of simultaneously achieving low latency and low energy consumption. Here, we demonstrate memristors based on 2D cobalt phosphorus trisulfide (CoPS), which achieve impressive performance metrics including high switching speed (20 ns), low switching energy (1.

View Article and Find Full Text PDF

A highly effective method for creating a supramolecular metallogel of Ni(II) ions (NiA-TA) has been developed in our work. This approach uses benzene-1,3,5-tricarboxylic acid as a low molecular weight gelator (LMWG) in DMF solvent. Rheological studies assessed the mechanical properties of the Ni(II)-metallogel, revealing its angular frequency response and thixotropic behaviour.

View Article and Find Full Text PDF

High-performance 2D electronic devices enabled by strong and tough two-dimensional polymer with ultra-low dielectric constant.

Nat Commun

December 2024

Department of Materials Science and NanoEngineering and the Rice Advanced Materials Institute, Rice University, Houston, TX, 77005, USA.

As the feature size of microelectronic circuits is scaling down to nanometer order, the increasing interconnect crosstalk, resistance-capacitance (RC) delay and power consumption can limit the chip performance and reliability. To address these challenges, new low-k dielectric (k < 2) materials need to be developed to replace current silicon dioxide (k = 3.9) or SiCOH, etc.

View Article and Find Full Text PDF

Understanding the establishment of ecological security patterns in arid and semi-arid regions is critical for global ecological risk prevention, control, and sustainable development. Nonetheless, there remains a relative deficiency in ecological risk assessment and construction of Ecological Security Patterns (ESP) in these areas, along with insufficient verification regarding the changes in ecological security patterns under diverse scenarios. This study employs Morphological Spatial Pattern Analysis (MSPA) to identify ecological sources and utilizes circuit theory alongside Minimum Cumulative Resistance (MCR) to delineate ecological corridors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!