Cholecystokinin (CCK) is an important gastrointestinal hormone as well as a neurotransmitter. Two types of CCK receptors, types A and B, have been identified. The CCK-A receptor is involved in satiety, food intake and behavior, whereas the B receptor is involved in anxiety. We recently produced CCK-A, -B and AB receptor knockout mice to study the role of these receptors in energy metabolism. Daily energy intake and expenditure were significantly greater in CCK-BR(-/-) and CCK-AR(-/-)BR(-/-) mice than CCK-AR(-/-) and wild-type [CCK-AR(+/+)BR(+/+)] mice. Relative liver and kidney weights (g/kg body) were significantly greater in CCK-AR(-/-)BR(-/-) mice than in wild-type mice. Energy metabolism and energy turnover were increased in mice with a disruption of the CCK-BR gene, although the underlying mechanism is unknown.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jn/132.4.739DOI Listing

Publication Analysis

Top Keywords

energy metabolism
12
turnover increased
8
increased mice
8
cck-a receptor
8
receptor involved
8
cck-ar-/-br-/- mice
8
mice
7
energy
5
metabolism turnover
4
mice lacking
4

Similar Publications

Our previous studies revealed the existence of a Universal Receptive System that regulates interactions between cells and their environment. This system is composed of DNA- and RNA-based Teazeled receptors (TezRs) found on the surface of prokaryotic and eukaryotic cells, as well as integrases and recombinases. In the current study, we aimed to provide further insight into the regulatory role of TezR and its loss in Staphylococcus aureus gene transcription.

View Article and Find Full Text PDF

This study investigates the phenolic compounds (PC), volatile compounds (VC), and fatty acids (FA) of extra virgin olive oil (EVOO) derived from the Turkish olive variety "Sarı Ulak", along with ADMET, DFT, molecular docking, and gene network analyses of significant molecules identified within the EVOO. Chromatographic methods (GC-FID, HPLC) were employed to characterize FA, PC, and VC profiles, while quality parameters, antioxidant activities (TAC, ABTS, DPPH) were assessed via spectrophotometry. The analysis revealed a complex composition of 40 volatile compounds, with estragole, 7-hydroxyheptene-1, and 3-methoxycinnamaldehyde as the primary components.

View Article and Find Full Text PDF

Metabolic engineering of Priestia megaterium for 2'-fucosyllactose production.

Microb Cell Fact

January 2025

Department of Chemical & Biological Engineering, Korea University, Seoul, 136-763, Korea.

Background: 2'-Fucosyllactose (2'-FL) is a predominant human milk oligosaccharide that significantly enhances infant nutrition and immune health. This study addresses the need for a safe and economical production of 2'-FL by employing Generally Recognized As Safe (GRAS) microbial strain, Priestia megaterium ATCC 14581. This strain was chosen for its robust growth and established safety profile and attributing suitable for industrial-scale production.

View Article and Find Full Text PDF

Mitochondrial carrier homolog 2 (MTCH2) is a regulator of apoptosis, mitochondrial dynamics, and metabolism. Loss of MTCH2 results in mitochondrial fragmentation, an increase in whole-body energy utilization, and protection against diet-induced obesity. In this study, we used temporal metabolomics on HeLa cells to show that MTCH2 deletion results in a high ATP demand, an oxidized cellular environment, and elevated utilization of lipids, amino acids, and carbohydrates, accompanied by a decrease in several metabolites.

View Article and Find Full Text PDF

Outer mitochondrial membrane (OMM) proteins communicate with the cytosol and other organelles, including the endoplasmic reticulum. This communication is important in thermogenic adipocytes to increase the energy expenditure that controls body temperature and weight. However, the regulatory mechanisms of OMM protein insertion are poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!