The synaptic vesicle protein synaptotagmin I probably plays important roles in the synaptic vesicle cycle. However, the mechanisms of its action remain unclear. In this study, we have searched for cytoplasmic proteins that interact with synaptotagmin I. We found that the cytoskeletal protein tubulin directly and stoichiometrically bound to recombinant synaptotagmin I. The binding depended on mm Ca(2+), and 1 mol of tubulin dimer bound 2 mol of synaptotagmin I with half-maximal binding at 6.6 microm tubulin. The Ca(2+) dependence mainly resulted from Ca(2+) binding to the Ca(2+) ligands of synaptotagmin I. The C-terminal region of beta-tubulin and both C2 domains of synaptotagmin I were involved in the binding. The YVK motif in the C2 domains of synaptotagmin I was essential for tubulin binding. Tubulin and synaptotagmin I were co-precipitated from the synaptosome extract with monoclonal antibodies to tubulin and SNAP-25 (synaptosome-associated protein of 25 kDa), indicating the presence of tubulin/synaptotagmin I complex and tubulin binding to synaptotagmin I in SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complexes. Synaptotagmin I promoted tubulin polymerization and bundled microtubules in the presence of Ca(2+). These results suggest that direct interaction between synaptotagmin I and tubulin provides a mechanism for attaching synaptic vesicles to microtubules in high Ca(2+) concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M112080200DOI Listing

Publication Analysis

Top Keywords

synaptotagmin
12
tubulin
10
tubulin synaptotagmin
8
mechanism attaching
8
attaching synaptic
8
synaptic vesicles
8
vesicles microtubules
8
synaptic vesicle
8
domains synaptotagmin
8
tubulin binding
8

Similar Publications

Neurotransmitters are released from synaptic vesicles with remarkable precision in response to presynaptic calcium influx but exhibit significant heterogeneity in exocytosis timing and efficacy based on the recent history of activity. This heterogeneity is critical for information transfer in the brain, yet its molecular basis remains poorly understood. Here, we employ a biochemically-defined fusion assay under physiologically relevant conditions to delineate the minimal protein machinery sufficient to account for various modes of calcium-triggered vesicle fusion dynamics.

View Article and Find Full Text PDF

Syntaxin 4-enhanced plasma membrane repair isindependent of dysferlin in skeletal muscle.

Am J Physiol Cell Physiol

December 2024

Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.

Plasma membrane repair (PMR) restores membrane integrity of cells, preventing cell death in vital organs, and has been studied extensively in skeletal muscle. Dysferlin, a sarcolemmal Ca-binding protein, plays a crucial role in PMR in skeletal muscle. Previous studies have suggested that PMR employs membrane trafficking and membrane fusion, similar to neurotransmission.

View Article and Find Full Text PDF

Vesicle docking and fusion pore modulation by the neuronal calcium sensor Synaptotagmin-1.

Biophys J

December 2024

Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT; Nanobiology Institute, Yale University, West Haven, CT; Molecular Biophysics and Biochemistry, Yale University, New Haven, CT; Saints-Pères Paris Institute for the Neurosciences (SPPIN), Université de Paris, Centre National de la Recherche Scientifique (CNRS) UMR 8003, Paris, France; Wu Tsai Institute, Yale University. Electronic address:

Synaptotagmin-1 (Syt1) is a major calcium sensor for rapid neurotransmitter release in neurons and hormone release in many neuroendocrine cells. It possesses two tandem cytosolic C2 domains that bind calcium, negatively charged phospholipids, and the neuronal SNARE complex. Calcium binding to Syt1 triggers exocytosis, but how this occurs is not well understood.

View Article and Find Full Text PDF

Biomarkers of Synaptic Degeneration in Alzheimer's Disease.

Ageing Res Rev

December 2024

Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China; Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong, China. Electronic address:

Synapse has been considered a critical neuronal structure in the procession of Alzheimer's disease (AD), attacked by two pathological molecule aggregates (amyloid-β and phosphorylated tau) in the brain, disturbing synaptic homeostasis before disease manifestation and subsequently causing synaptic degeneration. Recently, evidence has emerged indicating that soluble oligomeric amyloid-β (AβO) and tau exert direct toxicity on synapses, causing synaptic damage. Synaptic degeneration is closely linked to cognitive decline in AD, even in the asymptomatic stages of AD.

View Article and Find Full Text PDF

DNA-Assisted Assays for Studying Lipid Transfer Between Membranes.

Methods Mol Biol

December 2024

State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China.

Extended-synaptotagmins (E-Syts) are proteins located on the endoplasmic reticulum (ER) that tether the ER to the plasma membrane (PM) and regulate their lipid homeostasis via its lipid transfer module, the synaptotagmin-like mitochondrial lipid-binding protein (SMP) domain. Here, we describe in vitro DNA nanostructure-assisted lipid transfer assays investigating how the SMP domain transports lipids between membranes and associates with the membranes to extract and release lipids. The lipid transfer signal was detected through fluorescence resonance energy transfer (FRET).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!