Volatiles collections and cuticular extracts of the wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), were analyzed by coupled gas chromatographic-electroantennographic detection (GC-EAD) in order to detect possible pheromone components of this species. Volatiles collections from male and female sawflies contained the same 13 GC-EAD-active compounds that stimulated both male and female antennae. GC-EAD-active compounds were identified by mass spectrometry, and the identities were verified by acquiring or synthesizing authentic standards with identical GC retention times and mass spectra. 9-Acetyloxynonanal gave the strongest EAD response. Additional GC-EAD-active compounds included 13-acetyloxytridecanal, aldehydes with 9-16 carbon chain lengths, acids with 8-10 carbon chain lengths, and phenylacetic acid. The last was instantly detectable by human nose when several males were allowed to interact, but not from isolated insects. On a per-insect basis, grouped males overall released higher amounts of the GC-EAD-active compounds than grouped females. Notable quantitative differences between the sexes were relatively higher amounts of 9-acetyloxynonanal, phenylacetic acid, and tetradecanal from males and hexadecanal from females. In the absence of an absolute, qualitative difference between sexes, these relative differences might be important for sex recognition. Field bioassay demonstrated the attractiveness of 9-acetyloxynonanal for male and female C. cinctus. The major compounds of male and female cuticular extracts showed no GC-EAD activity, but ozonolysis of extracts gave dramatically increased amounts of GC-EAD-active material. Hence, double-bond-containing cuticular compounds are suggested as precursors of the aldehydic pheromone components.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/a:1017946527376 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!