This paper describes a driving circuit for an electrochemical quartz crystal microbalance (EQCM) adapted to a wide range of applications. The oscillator is a Miller-type parallel oscillator using an operational transconductance amplifier (OTA). A theoretical study of the oscillating circuit led to the analytical expression of the microbalance frequency as well as to an overestimation of the error on the mass measurement. The reliability of the EQCM was then experimentally verified through electrochemical copper deposition and dissolution. The limit of operation of the EQCM was also investigated, both analytically and experimentally. This work shows that parallel oscillators using few electronic components allow a very reliable EQCM to be obtained for mass measurements on metallic films, even if they are highly damped.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac010883s | DOI Listing |
Cogn Neurodyn
December 2024
Department of Electronics and Communication Engineering, Vemu Institute of Technology, Chittoor, India.
The studies conducted in this contribution are based on the analysis of the dynamics of a homogeneous network of five inertial neurons of the Hopfield type to which a unidirectional ring coupling topology is applied. The coupling is achieved by perturbing the next neuron's amplitude with a signal proportional to the previous one. The system consists of ten coupled ODEs, and the investigations carried out have allowed us to highlight several unusual and rarely related dynamics, hence the importance of emphasizing them.
View Article and Find Full Text PDFPhys Rev E
November 2024
School of Mathematics and Physics, Gangneung-Wonju National University, Gangneung 25457, South Korea.
This study investigates the Rayleigh-Taylor instability in the magnetic field applied parallel to the interface. The motion of the interface is described using a current-vortex-sheet model. The growth rate of the interface is obtained from a linear stability analysis of the model.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany.
While there is much knowledge about local neuronal circuitry, considerably less is known about how neuronal input is integrated and combined across neuronal networks to encode higher order brain functions. One challenge lies in the large number of complex neural interactions. Neural networks use oscillating activity for information exchange between distributed nodes.
View Article and Find Full Text PDFUltramicroscopy
March 2025
Department of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH, United Kingdom. Electronic address:
The rich information of electron energy-loss spectroscopy (EELS) comes from the complex inelastic scattering process whereby fast electrons transfer energy and momentum to atoms, exciting bound electrons from their ground states to higher unoccupied states. To quantify EELS, the common practice is to compare the cross-sections integrated within an energy window or fit the observed spectrum with theoretical differential cross-sections calculated from a generalized oscillator strength (GOS) database with experimental parameters. The previous Hartree-Fock-based and DFT-based GOS are calculated from Schrödinger's solution of atomic orbitals, which does not include the full relativistic effects.
View Article and Find Full Text PDFClin Neurophysiol Pract
November 2024
Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy.
Objective: Since the habituation deficit of evoked potentials could be related to abnormal thalamocortical drive, we searched for a modulatory effect of ketogenic diet (KD) on somatosensory-evoked thalamo-cortical activity. KD is effective in preventing migraine. Previous studies showed that KD normalises habituation of somatosensory and visual cortical evoked responses in parallel with a decrease in of migraine attack frequency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!