The aim of the study was, to evaluate the metabolic effect of HAY's diet on protein turnover, fat oxidation, respiratory quotient, body fat and weight loss. Twelve healthy adults received an individually regular diet and thereafter a corresponding isocaloric and isonitrogenous 10-day HAY-diet. Protein turnover and 13C-fat oxidation were investigated after administration of [15N]glycine and an [U-13C]algae lipid mixture. The 15N and 13C enrichment in urine and breath were measured by isotope ratio mass spectrometry. The respiratory quotient was measured by indirect calorimetry. Body fat, total body water and lean body mass were estimated by bio-electric impedance analysis. HAY's diet led to a significantly higher 13C-fat oxidation (15.4 vs. 22.0% P < 0.01), corresponding to a lower respiratory quotient (0.88 vs. 0.81; P < 0.01), whereas the protein turnover remained constant in both diets (3.06 vs. 3.05 g/kg/day). HAY's diet did not reduce total body water, lean body mass, body fat and body weight (72.2 vs. 71.4 kg).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10256010108033298 | DOI Listing |
Background: Over the past several decades, the overweight and obesity epidemic in the USA has resulted in a significant health and economic burden. Understanding current trends and future trajectories at both national and state levels is crucial for assessing the success of existing interventions and informing future health policy changes. We estimated the prevalence of overweight and obesity from 1990 to 2021 with forecasts to 2050 for children and adolescents (aged 5-24 years) and adults (aged ≥25 years) at the national level.
View Article and Find Full Text PDFAnimals (Basel)
June 2023
Department of Animal Science, University of Arkansas, Fayetteville, AR 72701, USA.
Hominy feed (HF) has been evaluated in feedlot and dairy rations but has not been evaluated as a supplemental energy source for lactating beef cows. The objective of this study was to determine the effect of level of HF supplementation on intake, digestibility, ruminal fermentation characteristics, and in situ dry matter (DM) disappearance of bermudagrass hay. Five ruminally cannulated lactating beef cows (body weight (BW) = 596 kg, SE = 13.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!