Earth sciences. The study of superfloods.

Science

Department of Hydrology and Water Resources, University of Arizona, Tucson, AZ 85721, USA.

Published: March 2002

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1068448DOI Listing

Publication Analysis

Top Keywords

earth sciences
4
sciences study
4
study superfloods
4
earth
1
study
1
superfloods
1

Similar Publications

Tropical peatlands are carbon-dense ecosystems that are significant sources of atmospheric methane (CH). Recent work has demonstrated the importance of trees as an emission pathway for CH from the peat to the atmosphere. However, there remain questions over the processes of CH production in these systems and how they relate to substrate supply.

View Article and Find Full Text PDF

De novo transcriptome assembly of the Perna viridis: A novel invertebrate model for ecotoxicological studies.

Sci Data

January 2025

Marine Biotechnology Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Post Box No 1603 Ernakulam North PO., Kochi, 682018, Kerala, India.

Mussels, particularly Perna viridis, are vital sentinel species for toxicology and biomonitoring in environmental health. This species plays a crucial role in aquaculture and significantly impacts the fisheries sector. Despite the ecological and economic importance of this species, its omics resources are still scarce.

View Article and Find Full Text PDF

Phase transitions in the mantle control its internal dynamics and structure. The post-spinel transition marks the upper-lower mantle boundary, where ringwoodite dissociates into bridgmanite plus ferropericlase, and its Clapeyron slope regulates mantle flow across it. This interaction has previously been assumed to have no lateral spatial variations, based on the assumption of a linear post-spinel boundary in pressure and temperature.

View Article and Find Full Text PDF

High-temperature structural disorders stabilize hydrous aluminosilicates in the mantle transition zone.

Nat Commun

January 2025

Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China.

Hydrous aluminosilicates are important deep water-carriers in sediments subducting into the deep mantle. To date, it remains enigmatic how hydrous aluminosilicates withstand extremely high temperatures in the mantle transition zone. Here we systematically investigate the crystal structures and chemical compositions of typical hydrous aluminosilicates using single-crystal X-ray diffraction, electron probe microanalyzer, and nanoscale secondary ion mass spectrometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!