The Sup35 (eRF3) translation termination factor of Saccharomyces cerevisiae can undergo a prion-like conformational conversion, thus resulting in the [PSI(+)] nonsense-suppressor determinant. In vivo this process depends critically on the chaperone Hsp104, whose lack or overexpression can cure [PSI(+)]. The use of artificial prion [PSI(+)PS] based on a hybrid Sup35PS with prion domain from the yeast Pichia methanolica allowed us to uncover three more chaperones, Ssb1, Ssa1, and Ydj1, whose overexpression can cure prion determinants. Here, we used the [PSI(+)PS] to search a multicopy yeast genomic library for novel factors able to cure prions. It was found that overexpression of the Hsp40 family chaperones Sis1 and Ynl077w, chaperone Sti1, transcriptional factors Sfl1 and Ssn8, and acidic ribosomal protein Rpp0 can interfere with propagation and manifestation of [PSI(+)PS] in a prion strain-specific manner. Some of these factors also affected the manifestation and propagation of conventional [PSI(+)]. Excess of Sfl1, Ssn8, and Rpp0 influenced at least one of the tested chaperone-specific promoters, SSA4, HSP104, and model promoters, with either the heat shock or stress response elements. Thus, the induction of chaperone expression by these proteins could explain their prion-curing effects.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M111547200DOI Listing

Publication Analysis

Top Keywords

transcriptional factors
8
ribosomal protein
8
protein rpp0
8
overexpression cure
8
sfl1 ssn8
8
increased expression
4
expression hsp40
4
hsp40 chaperones
4
chaperones transcriptional
4
factors
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!