Purpose: The lipofuscin fluorophore A2E is known to be an initiator of blue-light-induced apoptosis in retinal pigment epithelial cells (RPE). The purpose of this study was to evaluate the role of oxidative mechanisms in mediating the cellular damage.
Methods: Human RPE (ARPE-19) cells that had accumulated A2E were exposed to blue light in the presence and absence of oxygen, and nonviable cells were quantified. Potential suppressors (histidine, azide, 1,4-diazabicyclooctane [DABCO], and 1,3-dimethyl-2-thiourea [DMTU]) and enhancers (deuterium oxide [D(2)O] and 3-aminotriazole [3-AT]) of oxidative damage, were also screened for their ability to modulate the frequency of nonviable cells. A2E in PBS, with and without an oxygen-depleter or singlet-oxygen quencher and A2E-laden RPE, were exposed to 430-nm light and examined by reversed-phase high performance liquid chromatography (HPLC) and fast atom bombardment mass spectrometry (FAB-MS).
Results: The death of blue-light-illuminated A2E-laden RPE was blocked in oxygen-depleted media. When A2E-laden RPE were transferred to D(2)O-based media and then irradiated (480 nm), the number of nonviable cells was increased, whereas the latter was decreased in the presence of histidine, DABCO, and azide. Conversely, no affect was observed with 3-AT and DMTU. When A2E, in either acellular or cellular environments, was irradiated at 430 nm, FAB-MS revealed the generation of a series of higher molecular mass derivatives of A2E. The sizes of these species increased by increments of mass 16. The generation of these photo-products was accompanied by the consumption of A2E, the latter being diminished, however, when illumination was performed after oxygen depletion and in the presence of a singlet-oxygen quencher.
Conclusions: The augmentation of cell death in the presence of D(2)O and the protection afforded by quenchers and scavengers of singlet oxygen, indicates that the generation of singlet oxygen may be involved in the mechanisms leading to the death of A2E-containing RPE cells after blue light illumination. The finding that irradiation also produces oxygen-dependent photochemical changes in A2E, indicates that the effects of singlet oxygen may be mediated either directly or through the generation of reactive photo-products of A2E.
Download full-text PDF |
Source |
---|
Antioxidants (Basel)
August 2024
Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea.
The purpose of this study was to investigate the protective effects of 7S,15R-dihydroxy-16S,17S-epoxy-docosapentaenoic acid (diHEP-DPA) in retinal pigment epithelial (RPE) cell damage. ARPE-19 cells, a human RPE cell line, were cultured with diHEP-DPA and Bis-retinoid N-retinyl-N-retinylidene ethanolamine (A2E), followed by exposure to BL. Cell viability and cell death rates were determined.
View Article and Find Full Text PDFAntioxidants (Basel)
January 2023
Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea.
Natural products with significant antioxidant activity have been receiving attention as one of the treatment strategies to prevent age-related macular degeneration (AMD). Reactive oxygen intermediates (ROI) including oxo-N-retinylidene-N-retinylethanolamine (oxo-A2E) and singlet oxygen-induced damage, are believed to be one of the major causes of the development of AMD. To investigate the therapeutic effects of methanol extracts of Roxb.
View Article and Find Full Text PDFLife (Basel)
October 2022
Gachon Research Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Korea.
N-retinylidene-N-retinylethanolamine (A2E) is a component of drusen that accumulates in retinal cells and induces oxidative stress through photooxidation, such as blue light (BL). We found that the heme oxygenase 1 () gene responds sensitively to photooxidation by the BL of A2E in retinal pigment epithelial (RPE) cells, and we sought to identify the transcription factors and coactivators involved in the upregulation of by A2E and BL. A2E-laden human RPE cells (ARPE-19) were exposed to BL (430 nm).
View Article and Find Full Text PDFAntioxidants (Basel)
April 2022
Gachon Research Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Korea.
Although blackcurrant has several health benefits, such as antioxidant and anti-inflammatory properties, its effects on the retina remain unclear. In this study, we investigated the efficacy of black currant extract (BCE) in an in vitro and in vivo model of dry age-related macular degeneration (AMD) induced by blue light. Dry macular degeneration is characterized by the abnormal accumulation of lipofuscin (e.
View Article and Find Full Text PDFNutrients
January 2022
Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
Age-related macular degeneration (AMD) is a significant visual impairment in older people, and there is no treatment for dry AMD. (), a cyanobacterium, has inhibitory effects against oxidative stress. However, the protective effects of and its underlying mechanisms on blue light (BL)-caused macular degeneration are unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!