A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evolution of viviparity: what can Australian lizards tell us? | LitMetric

Evolution of viviparity: what can Australian lizards tell us?

Comp Biochem Physiol B Biochem Mol Biol

School of Biological Sciences and Wildlife Research Institute, Heydon-Laurence Building (A08), University of Sydney, NSW 2006, Sydney, Australia.

Published: April 2002

AI Article Synopsis

  • Australia plays a crucial role in understanding viviparity evolution in amniote vertebrates due to its diverse skink fauna, particularly within the Eugongylus group which includes species with both oviparous and viviparous reproductive strategies.
  • The research focuses on three main aspects: morphology and development of placentae, changes in the uterus during pregnancy, and nutrient exchange across placentae, leading to significant findings about the complexity of placenta development, specific transformations in viviparous lizards, and the nutrient transport capabilities of various placental types.
  • The study highlights that the evolution of complex placentae involves more intricate mechanisms than previously thought, emphasizing the significance of both the chorioallantoic placenta’s structure and the transformation of

Article Abstract

Historically, Australia has been important in the study of, and the development of hypotheses aimed at understanding, the evolution of viviparity in amniote vertebrates. Part of the importance of Australia in the field results from a rich fauna of skinks, including one of the broadest ranges of diversity of placental structures within one geographic region. During the last decade, we have focussed our studies on one lineage, the Eugongylus group of skinks of the subfamily Lygosominae because it contains oviparous species and some that exhibit complex placentae. Our specific objective has been to attempt to understand the fundamental steps required when viviparity, and ultimately complex placentae, evolve from oviparous ancestors. We have taken a three-prong approach: (1) detailed study of the morphology and ontogeny of the placentae of key species at the light microscope level; (2) study of changes in the uterus associated with pregnancy, or the plasma membrane transformation; and (3) measures of the net exchange of nutrients across the placenta or eggshell of key species. In turn, we have found that: (1) details of the morphology and ontogeny of placentae are more complex that originally envisaged, and that the early conclusions about a sequence in the evolution of complex placentae was naïve; (2) a plasma membrane transformation occurs in viviparous, but not oviparous lizards, and thus may be a fundamental feature of the evolution of viviparity in amniotes; and (3) species with more complex chorioallantoic placentae tend to transport more nutrients across the placenta during pregnancy than those with simpler chorioallantoic placentae but, because the correlation is not tight, the importance of the omphaloplacenta in transporting nutrients may have been overlooked. Also, the composition of yolk of highly matrotrophic species is broadly similar, but not identical, to the yolk of oviparous species. Some of the interpretation of our data within the context of our specific objective is not yet possible, pending the publication of a robust phylogeny of Eugongylus group skinks. Once such a phylogeny is available, we are in a position to propose specific hypotheses about the evolution of viviparity that can be tested using another lineage of amniotes, possibly Mabuya group skinks.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1096-4959(02)00013-1DOI Listing

Publication Analysis

Top Keywords

evolution viviparity
16
group skinks
12
complex placentae
12
eugongylus group
8
oviparous species
8
specific objective
8
morphology ontogeny
8
ontogeny placentae
8
key species
8
plasma membrane
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!