The kinetics of triple helix formation from single non-crosslinked peptide chains were studied for the collagen models (ProProGly)10 and (ProHypGly)10 in a broad concentration range and compared with those in nucleated trimers. At very low peptide concentrations the reaction order is 3 but decreases at higher concentrations. For (ProProGly)10 the third order rate constant is 800 M(-2) x s(-1) at 7 degrees C, which corresponds to a very long half time of 15 hours at 60 microM chain concentration. For (ProHypGly)10 the rate constant is about 1000-fold higher, which is consistent with the stabilizing effect of 4-hydroxyproline in collagens. The concentration dependence of the reaction order is explained by a nucleation mechanism in which a very unstable dimer is in fast equilibrium with the monomeric chains and addition of the third chain occurs in a rate-limiting step. At high concentrations nucleation is faster than propagation of helix formation and propagation becomes rate-limiting. To test this hypothesis an artificial nucleus was introduced by fusion of (ProProGly)10 with the trimeric foldon domain of T4 phage or the crosslinking domain of collagen III GlyProProGlyProCysCysGlyGlyGly. These domains were recombinantly attached to the C terminus of (GlyProPro)10 and link the three chains in a similar way to the C-terminal propeptide domain in collagen III. This results in a local intrinsic chain concentration of about 1 M. A first order reaction is observed for the folding of the triple helix in (GlyProPro)10foldon with a half time of 8.3 minutes, which approximately matches the rate of folding from single chains at 1 M peptide concentration. A high activation energy of 54 kJ/mol is found for this reaction, whereas the temperature dependence of the nucleation step is close to zero, confirming earlier findings on natural collagens that cis-trans isomerization of peptide bonds is the rate-limiting step in propagation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/jmbi.2002.5439 | DOI Listing |
In solid-state nuclear magnetic resonance (ssNMR) spectroscopy, fast magic angle spinning (MAS) is a potent technique that efficiently reduces line broadening and makes it possible to probe structural details of biological systems in high resolution. However, its utilization in studying complex heterogeneous biomaterials such as bone in their native state has been limited. The present study has demonstrated the feasibility of acquiring two-dimensional (2D) H-H correlation spectra for native bone using multiple-quantum/single-quantum correlation experiments (MQ/SQ) at fast MAS (70 kHz).
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Center for Biotechnology, Anna University, Chennai 600 025, India. Electronic address:
Alpha-ketoglutarate (αKG) dependent Lysyl hydroxylase (LH) is a critical enzyme in the post-translational conversion of lysine into hydroxylysine in collagen triple helix and telopeptide regions. Overexpression of LH increases collagen hydroxylation and covalent cross-linkage, causing fibrosis. Currently, no drugs are available to inhibit LH potentially.
View Article and Find Full Text PDFGels
November 2024
Biopolymer Research & Engineering Laboratory (BIOPREL), Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de Los Andes, Santiago 7550000, Chile.
Gelatin is a natural hydrocolloid with excellent film-forming properties, high processability, and tremendous potential in the field of edible coatings and food packaging. However, its reinforcing by materials such as cellulose nanocrystals (CNC) is often necessary to improve its mechanical behavior, including shape memory properties. Since the interaction between these polymers is complex and its mechanism still remains unclear, this work aimed to study the effect of low concentrations of CNC (2, 6, and 10 weight%) on the molecular organization, thermomechanical, and shape memory properties in mammalian gelatin-based composite films at low moisture content (~10 weight% dry base).
View Article and Find Full Text PDFFitoterapia
December 2024
State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China. Electronic address:
Prunella vulgaris is a medicinal and edible homologous plant, commonly used as a folk medicine to treat diseases. The Prunella vulgaris polysaccharides (PVPs) are reported with the antioxidant activity. This work was designed to isolate, characterize, and test the antioxidant activity of purified PVPs from P.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China. Electronic address:
The foaming and polarization of macrophages are pivotal in the formation and development of atherosclerosis. This study delved into the structure and membrane pattern recognition receptors (PRRs) of the neutral polysaccharide fraction (PPRLMF-1), investigating effects of PPRLMF-1 and acid polysaccharide fraction (PPRLMF-2) on the foaming and polarization of RAW264.7 macrophage cells, and exploring their underlying mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!