Counter-selection is a useful gene manipulation technique for repeated gene disruptions, gene shufflings and gene replacements in yeasts. We developed a novel counter-selection system using a galactose-inducible growth inhibitory sequence (Kawahata et al.1999. Yeast 15: 1-10). This counter-selection marker, named GAL10p-GIN11, has several advantages over previous counter-selection markers, i.e. use of an inexpensive galactose medium for counter-selection, combined use with any transformation markers for gene introduction, and no requirement of specific mutations in the host strains. The GIN11 sequence, which is a part of an X-element of the subtelomeric regions, contained a conserved autonomously replicating sequence, causing the possibility of inefficient chromosomal integration. We isolated GIN11 mutants that lost the replication activity but retained the growth-inhibitory effect when overexpressed. A mutant GIN11M86 sequence was selected and fused to the CUP1 promoter for the counter-selection on a copper-containing medium. The GALp-GIN11M86 and the CUPp-GIN11M86 were used for constructing sets of integrating plasmids containing auxotrophic markers involving HIS3, TRP1, LEU2, URA3 or ADE2, or a drug-resistant marker PGKp-YAP1. In addition, a set of gene disruption cassettes that contained each of the auxotrophic markers and the GALp-GIN11M86, which were flanked by direct repeats of a hisG sequence, were constructed. The counter-selectable integrating plasmids and the gene disruption cassettes can allow the markers to be used repeatedly for yeast gene manipulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/yea.841 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!