Porous resins as a cavitation enhancer for low-frequency sonophoresis.

J Pharm Sci

Department of Chemical Engineering, Massachusetts Institute of Technology E25-342, 45 Carlton Street, Cambridge, MA 02139, USA.

Published: March 2002

The application of low-frequency ultrasound enhances drug transport through the skin, a phenomenon referred to as low-frequency sonophoresis. This enhancement is mediated through cavitation, the formation and collapse of gaseous bubbles. We hypothesized that the efficacy of low-frequency sonophoresis can be significantly enhanced by provision of nuclei for cavitation. In this study, we used two porous resins, Diaion HP20 and Diaion HP2MG (2MG), as cavitation nuclei. We measured the effect of these resins on cavitation using pitting of aluminum foil. 2MG showed a higher efficacy in enhancing cavitation compared with Diaion HP20. 2MG was also effective in enhancing transdermal mannitol transport. These results confirm that the addition of cavitation nuclei such as porous resins further increases the effect of low-frequency ultrasound on skin permeability.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jps.10080DOI Listing

Publication Analysis

Top Keywords

porous resins
12
low-frequency sonophoresis
12
resins cavitation
8
low-frequency ultrasound
8
diaion hp20
8
cavitation nuclei
8
cavitation
7
low-frequency
5
cavitation enhancer
4
enhancer low-frequency
4

Similar Publications

Porous carbons with complex 3D geometries via selective laser sintering of whey powder.

Sci Rep

January 2025

Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, c/Francisco Pintado Fe 26, Oviedo, 33011, Spain.

In addition to the inherent limitations of carbons to melt or flow, a vast majority of carbon precursors deforms during carbonisation, with stereolithography of thermoset resins being the preferred technology for 3D printing of carbons. An alternative is now presented with the possibility of using a melting-based technology, selective laser sintering (SLS), to fabricate 3D structures that withstand carbonisation. The key factor that makes this happen is whey powder, a natural, abundant and cheap by-product of the dairy industry.

View Article and Find Full Text PDF

Efficient Extraction of Phenols from Coal Tar and Preparation of Phenolic Resin-Based Porous Carbon for Advanced Supercapacitor Application.

Small

January 2025

State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China.

Developing simple and efficient extraction methods for phenolic substances from coal tar, which facilitate their direct transformation into high-performance electrode materials, holds considerable practical significance. In this study, amide-zinc chloride deep eutectic solvents are employed for efficient phenol extraction. The optimal phenol extraction process is subsequently investigated, and it is found that the robust hydrogen bonding interactions between solvents and phenols significantly enhance extraction efficiency.

View Article and Find Full Text PDF

Apexification is a crucial procedure for achieving apical healing in non-vital teeth with open apices. Traditionally, calcium hydroxide has been used for this purpose, but it has significant drawbacks, including prolonged treatment duration, increased risk of root fracture, and the potential for porous barrier formation. Mineral trioxide aggregate (MTA) has emerged as a superior alternative due to its biocompatibility, faster setting time, and better sealing properties.

View Article and Find Full Text PDF

Recently, the liquid composite molding technique (LCM) has been used for producing fiber-reinforced polymer composites, since it allows the molding of complex parts, presenting good surface finishing and control of the mechanical properties of the product at the end of the process. Studies in this area have been focused on resin transfer molding (RTM), specifically on the resin rectilinear infiltration through the porous preform inserted in the closed cavity neglecting the sorption effect of the polymeric fluid by the reinforcement. Thus, the objective of this work is to predict resin radial flow in porous media (fibrous preform), including the effect of resin sorption by fibers considering a one-dimensional approach.

View Article and Find Full Text PDF

Biofabrication of anisotropic articular cartilage based on decellularized extracellular matrix.

Biofabrication

January 2025

Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland.

Tissue-engineered grafts that mimic articular cartilage show promise for treating cartilage injuries. However, engineering cartilage cell-based therapies to match zonal architecture and biochemical composition remains challenging. Decellularized articular cartilage extracellular matrix (dECM) has gained attention for its chondro-inductive properties, yet dECM-based bioinks have limitations in mechanical stability and printability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!