In developmental stages of the clawed toad, Xenopus laevis, we describe the ontogeny of descending supraspinal connections, catecholaminergic projections in particular, by means of retrograde tracing techniques with dextran amines. Already at embryonic stages (stage 40), spinal projections from the reticular formation, raphe nuclei, Mauthner neurons, vestibular nuclei, the locus coeruleus, the interstitial nucleus of the medial longitudinal fasciculus, the posterior tubercle, and the periventricular nucleus of the zona incerta are well developed. At the beginning of the premetamorphic period (stage 46), spinal projections arise from the suprachiasmatic nucleus, the torus semicircularis, the pretectal region, and the ventral telencephalon. After stage 48, tectospinal and cerebellospinal projections develop, with spinal projections from the preoptic area following at stage 51. Rubrospinal projections are present at stage 50. During the prometamorphic period, spinal projections arise in the nucleus of the solitary tract, the lateral line nucleus, and the mesencephalic trigeminal nucleus. With in vitro double-labeling methods, based on retrograde tracing of dextran amines in combination with tyrosine hydroxylase (TH) immunohistochemistry, we show that at stage 40/41, catecholaminergic (CA) neurons in the posterior tubercle are the first to project to the spinal cord. Subsequently, at stage 43, new projections arise in the periventricular nucleus of the zona incerta and the locus coeruleus. The last CA projection to the spinal cord originates from neurons in the nucleus of the solitary tract at the beginning of prometamorphosis (stage 53). Our data show a temporal, rostrocaudal sequence in the development of the CA cell groups projecting to the spinal cord. Moreover, the early appearance of CA fibers, preterminals and terminal-like structures in dorsal, intermediate, and ventral zones of the embryonic spinal cord, suggests an important role for catecholamines during development in nociception, autonomic functions, and motor control at the spinal level.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.10170DOI Listing

Publication Analysis

Top Keywords

spinal cord
20
spinal projections
16
spinal
10
projections
9
descending supraspinal
8
xenopus laevis
8
retrograde tracing
8
dextran amines
8
stage
8
stage spinal
8

Similar Publications

Mechanical force orchestrates a myriad of cellular events including inhibition of axon regeneration, by locally activating the mechanosensitive ion channel Piezo enriched at the injured axon tip. However, the cellular mechanics underlying Piezo localization and function remains poorly characterized. We show that the RNA repair/splicing enzyme Rtca acts upstream of Piezo to modulate its expression and transport/targeting to the plasma membrane via Rab10 GTPase, whose expression also relies on Rtca.

View Article and Find Full Text PDF

Absence of functional acid-α-glucosidase (GAA) leads to early-onset Pompe disease with cardiorespiratory and neuromuscular failure. A novel Pompe rat model ( ) was used to test the hypothesis that neonatal gene therapy with adeno-associated virus serotype 9 (AAV9) restores cardiorespiratory neuromuscular function across the lifespan. Temporal vein administration of AAV9-DES-GAA or sham (saline) injection was done on post-natal day 1; rats were studied at 6-12 months old.

View Article and Find Full Text PDF

Multiple sclerosis (MS) falls within the spectrum of central nervous system (CNS) demyelinating diseases that may lead to permanent neurological disability. Fundamental to the diagnosis and clinical surveillance is magnetic resonance imaging (MRI) that allows for the identification of T2-hyperintensities associated with autoimmune injury that demonstrate distinct spatial distribution patterns. Here, we describe the clinical experience of a 31-year-old, right-handed, White man seen in consultation at The University of Texas Southwestern Medical Center in Dallas, Texas, following complaints of headaches that began after head trauma related to military service.

View Article and Find Full Text PDF

Study Design: Matched case-control study.

Purpose: To evaluate the midterm outcomes of unilateral pedicle screw fixation (UPSF) versus bilateral pedicle screw fixation (BPSF) in transforaminal lumbar interbody fusion (TLIF) procedure, ascertain efficacy of UPSF in adequately decompressing contralateral foramen+spinal canal and reducing rate of adjacent segment degeneration (ASD) at 4-8-year follow-up (FU).

Overview Of Literature: Previous meta-analyses found no significant differences between UPSF and BPSF regarding fusion rates, clinical and radiological outcomes; however, few studies have reported higher rates of cage migration/subsidence and pseudoarthrosis in the UPSF.

View Article and Find Full Text PDF

Study Design: A prospective web-based survey.

Purpose: Although intraoperative neurophysiological monitoring (IONM) is critical in spine surgery, its usage is largely based on the surgeon's discretion, and studies on its usage trends in Asia-Pacific countries are lacking. This study aimed to examine current trends in IONM usage in Asia-Pacific countries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!