Four plasma proteins have been shown to be able to mediate platelet adhesion to synthetic materials when they are adsorbed as purified proteins: fibrinogen (Fg), fibronectin (Fn), vitronectin (Vn), and von Willebrand factor (vWF). Among them, Fg is thought to play a leading role in mediating platelet adhesion to plasma-preadsorbed biomaterials, but this has been established for only three types of materials so far in our laboratory. Furthermore, the role of Fn, Vn, and vWF in mediating platelet adhesion to plasma-preadsorbed surfaces is still unclear. The aim of the current study was to assess the importance of Fg, Fn, Vn, and vWF in mediating platelet adhesion to a series of polystyrene-based surfaces. The strategy applied in the present investigation was to compare platelet adhesion to surfaces preadsorbed with normal plasma, plasma selectively depleted in Fn or Vn or both Fn and Vn, plasma from donors who were genetically deficient in vWF, and serum. Few platelets adhered to the surfaces preadsorbed with serum, whereas depletion of Fn, Vn, or vWF from plasma did not decrease platelet adhesion significantly. Replenishment of exogenous Fg to serum before protein adsorption restored platelet adhesion to the surfaces, suggesting that Fg was the major plasma protein that mediated platelet adhesion. Also, we found that a surface density of adsorbed Fg far below the amount that usually adsorbs to synthetic surfaces was sufficient to support full-scale platelet adhesion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.10048 | DOI Listing |
Int J Biol Macromol
January 2025
Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1416634793, Iran; Wound Care Solution, Nano Fanavaran Narin Teb Co., Tehran, P.O. Box 19177-53531, Iran; Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), University of Siegen, 57076 Siegen, Germany. Electronic address:
This study reports the development of a highly absorbent Chitosan (CS)/Tannic Acid (TA) sponge, synthesized via chemical cross-linking with Epichlorohydrin (ECH) and integrated with zinc oxide nanoparticles (ZnO NPs) as a novel hemostatic anti-infection agent. The chemical properties of the sponges were characterized using Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and zeta potential measurements. Morphological and elemental analyses conducted through scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDAX) revealed a uniform distribution of ZnO NPs, with particle sizes below 20 nm.
View Article and Find Full Text PDFBlood
January 2025
Medical University of Vienna, Vienna, Austria.
In thrombosis and hemostasis, the formation of a platelet-fibrin thrombus or clot is a highly controlled process that varies, depending on the pathological context. Major signaling pathways in platelets are well established. However, studies with genetically modified mice have identified the contribution of hundreds of additional platelet-expressed proteins in arterial thrombus formation and bleeding.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, 401336 Chongqing, China.
Background: Myocardial ischemia-reperfusion (I/R) injury and coronary microcirculation dysfunction (CMD) are observed in patients with myocardial infarction after vascular recanalization. The antianginal drug trimetazidine has been demonstrated to exert a protective effect in myocardial ischemia-reperfusion injury.
Objectives: This study aimed to investigate the role of trimetazidine in endothelial cell dysfunction caused by myocardial I/R injury and thus improve coronary microcirculation.
Sensors (Basel)
January 2025
School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
Platelet cells are essential to maintain haemostasis and play a critical role in thrombosis. They swiftly respond to vascular injury by adhering to damaged vessel surfaces, activating signalling pathways, and aggregating with each other to control bleeding. This dynamic process of platelet activation is intricately coordinated, spanning from membrane receptor maturation to intracellular interactions to whole-cell responses.
View Article and Find Full Text PDFBiomolecules
December 2024
Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic.
We investigated the sex-dependent effects of inflammatory responses in visceral adipose tissue (VAT) and perivascular adipose tissue (PVAT), as well as hematological status, in relation to cardiovascular disorders associated with prediabetes. Using male and female hereditary hypertriglyceridemic (HHTg) rats-a nonobese prediabetic model featuring dyslipidemia, hepatic steatosis, and insulin resistance-we found that HHTg females exhibited more pronounced hypertriglyceridemia than males, while HHTg males had higher non-fasting glucose levels. Additionally, HHTg females had higher platelet counts, larger platelet volumes, and lower antithrombin inhibitory activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!