Excellent progress has been made toward understanding the physiology and pharmacology of specific calcium-related cellular processes of the brain, but few studies have provided an integrated view of brain calcium kinetics. To further the knowledge of the size and binding properties of brain calcium compartments, the authors have conducted a series of experiments in hippocampal brain slices exposed to high and low extracellular calcium. Slices were incubated in buffers containing 0.001 to 4.5 mmol/L calcium for up to 75 minutes. Slice calcium content was analyzed by three methods: exchange equilibrium with 45Ca, synchrotron-radiation-induced x-ray emission, and inductively coupled plasma. Data were analyzed using a model based on a Langmuir isotherm for two independent sites, with additional extracellular and bound compartments. In parallel experiments, altered low calcium had no effect on slice histology and only mild effects on slice adenylates. When combined with prior 45Ca and fluorescent probe binding experiments, these results suggest that there are at least five kinetically distinct calcium compartments: (1) free extracellular (approximately 10%); (2) loosely associated extracellular plasma membrane (approximately 55%); (3) intracellular compartment with moderate avidity (approximately 17%); (4) tightly bound, nonexchangeable intracellular compartment ( approximately 15%); and (5) free cytoplasmic (<0.01%). If only the third compartment is considered a potential calcium buffer, then the buffering ratio is calculated to be approximately 2,700:1, but if the second compartment is also included, then the buffering ratio would be approximately 13,000:1. This may explain the wide range of estimates observed by fluorescent probe studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00004647-200204000-00012 | DOI Listing |
Nat Commun
January 2025
Neuroscience Institute, New York University Langone Health, New York, NY, 10016, USA.
Apical and basal dendrites of pyramidal neurons receive anatomically and functionally distinct inputs, implying compartment-level functional diversity during behavior. To test this, we imaged in vivo calcium signals from soma, apical dendrites, and basal dendrites in mouse hippocampal CA3 pyramidal neurons during head-fixed navigation. To capture compartment-specific population dynamics, we developed computational tools to automatically segment dendrites and extract accurate fluorescence traces from densely labeled neurons.
View Article and Find Full Text PDFJ Orthop Translat
January 2025
Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 6F Biomedical Technology Building, No. 301, Yuantong Rd., Zhonghe Dist., New Taipei City, 23564, Taiwan.
Background And Objective: Osteoarthritis is a widespread and debilitating condition, particularly affecting the medial compartment of knee joint due to varus knee deformities. Medial opening wedge high tibial osteotomy (MOWHTO) has emerged as an effective treatment, but it comes with challenges like fractures, correction loss, and nonunion, leading to unsatisfactory results in up to 26 % of patients. In response, our study explores the potential of a bioabsorbable magnesium-based bulk metallic glass composite (MgZnCa BMGC) enriched with molybdenum particles as an innovative solution for MOWHTO.
View Article and Find Full Text PDFCell Calcium
January 2025
Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
Membrane contact sites (MCS) are specialized compartments found in all eukaryotic cells that are formed between membranes of different organelles that are in close proximity. MCS have important functions as they are sites of efficient transfer of molecules between neighboring organelles. Two recent articles have used the splitFAST system to mark and follow the dynamics of membrane contact sites and used the method to highlight the importance of MCS between the endoplasmic reticulum (ER) and lipid droplets in metabolic adaptation and MCS between the ER and mitochondria in Ca signal propagation.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Department of Biotechnology, University of Verona, Verona, Italy.
Calcium (Ca)-dependent signalling plays a well-characterised role in the perception and response mechanisms to environmental stimuli in plant cells. In the context of a constantly changing environment, it is fundamental to understand how crop yield and microalgal biomass productivity are affected by external factors. Ca signalling is known to be important in different physiological processes in microalgae but many of these signal transduction pathways still need to be characterised.
View Article and Find Full Text PDFMembranes (Basel)
January 2025
Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy.
Intracellular organelles are common to eukaryotic cells and provide physical support for the assembly of specialized compartments. In skeletal muscle fibers, the largest intracellular organelle is the sarcoplasmic reticulum, a specialized form of the endoplasmic reticulum primarily devoted to Ca storage and release for muscle contraction. Occupying about 10% of the total cell volume, the sarcoplasmic reticulum forms multiple membrane contact sites, some of which are unique to skeletal muscle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!