The authors provide the first in vitro and in vivo evidence that perturbations in mitogen-activated protein kinase (MAPK) signal-transduction pathways are involved in the pathophysiology of traumatic brain injury. In primary rat cortical cultures, mechanical trauma induced a rapid and selective phosphorylation of the extracellular signal-regulated kinase (ERK) and p38 kinase, whereas there was no detectable change in the c-jun N-terminal kinase (JNK) pathway. Treatment with PD98059, which inhibits MAPK/ERK 1/2, the upstream activator of ERK, significantly increased cell survival in vitro. The p38 kinase and JNK inhibitor SB203580 had no protective effect. Similar results were obtained in vivo using a controlled cortical impact model of traumatic injury in mouse brain. Rapid and selective upregulation occurred in ERK and p38 pathways with no detectable changes in JNK. Confocal immunohistochemistry showed that phospho-ERK colocalized with the neuronal nuclei marker but not the astrocytic marker glial fibrillary acidic protein. Inhibition of the ERK pathway with PD98059 resulted in a significant reduction of cortical lesion volumes 7 days after trauma. The p38 kinase and JNK inhibitor SB203580 had no detectable beneficial effect. These data indicate that critical perturbations in MAPK pathways mediate cerebral damage after acute injury, and further suggest that ERK is a novel therapeutic target in traumatic brain injury.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00004647-200204000-00008DOI Listing

Publication Analysis

Top Keywords

traumatic brain
12
brain injury
12
p38 kinase
12
kinase jnk
12
mitogen-activated protein
8
protein kinase
8
vitro vivo
8
rapid selective
8
erk p38
8
jnk inhibitor
8

Similar Publications

Chitinase 3-like protein 1 (CHI3L1) is emerging as a promising biomarker for assessing intracranial lesion burden and predicting prognosis in traumatic brain injury (TBI) patients. Following experimental TBI, Chi3l1 transcripts were detected in reactive astrocytes located within the pericontusional cortex. However, the cellular sources of CHI3L1 in response to hemorrhagic contusions in human brain remain unidentified.

View Article and Find Full Text PDF

Background: Some studies suggest that balanced solutions may improve outcomes in critical care patients. However, in patients with traumatic brain injury (TBI) existing data indicate that normal saline may be preferred. We hypothesized that mortality in critically ill patients with and without TBI would differ with the use of balanced salt solutions versus normal saline.

View Article and Find Full Text PDF

Differentiating benign enlargement of subarachnoid spaces (BESS) from low-attenuation subdural collections on CT imaging of infants can be challenging. This distinction is crucial in infants, as subdural collections may raise the concern for abusive head trauma (AHT). To evaluate the utilization of the displaced cortical vein sign on CT as a predictor of pathological subdural collections confirmed by MRI and to assess the reproducibility of this finding among radiologists with different levels of clinical experience.

View Article and Find Full Text PDF

Spinal cord injury in abusive and accidental head injury in children, a neuropathological investigation.

Int J Legal Med

January 2025

London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.

The diagnosis of abusive head trauma (AbHT) in children is a challenging one that needs to be differentiated from natural disease and accidental head injury (AcHT). There is increasing evidence from the Neuroradiology field showing spinal cord injury in children subject to AbHT, which has, so far, been poorly investigated pathologically. In this study we retrospectively reviewed the forensic records of 110 paediatric head injury cases over an eight-year-period.

View Article and Find Full Text PDF

Effective team science requires procedural harmonization for rigor and reproducibility. Multicenter studies across experimental modalities (domains) can help accelerate translation. The Translational Outcomes Project in NeuroTrauma (TOP-NT) is a pre-clinical traumatic brain injury (TBI) consortium charged with establishing and validating noninvasive TBI assessment tools through team science.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!