Low fidelity DNA synthesis by a y family DNA polymerase due to misalignment in the active site.

J Biol Chem

Laboratory of Molecular Genetics and Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.

Published: May 2002

Sulfolobus solfataricus DNA polymerase IV (Dpo4) is a member of the Y family of DNA polymerases whose crystal structure has recently been solved. As a model for other evolutionarily conserved Y family members that perform translesion DNA synthesis and have low fidelity, we describe here the base substitution and frameshift fidelity of DNA synthesis by Dpo4. Dpo4 generates all 12 base-base mismatches at high rates, 11 of which are similar to those of its human homolog, DNA polymerase kappa. This result is consistent with the Dpo4 structure, implying lower geometric selection for correct base pairs. Surprisingly, Dpo4 generates C.dCMP mismatches at an unusually high average rate and preferentially at cytosine flanked by 5'-template guanine. Dpo4 also has very low frameshift fidelity and frequently generates deletions of even noniterated nucleotides, especially cytosine flanked by a 5'-template guanine. Both unusual features of error specificity suggest that Dpo4 can incorporate dNTP precursors when two template nucleotides are present in the active site binding pocket. These results have implications for mutagenesis resulting from DNA synthesis by Y family polymerases.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M202021200DOI Listing

Publication Analysis

Top Keywords

dna synthesis
16
dna polymerase
12
low fidelity
8
dna
8
fidelity dna
8
synthesis family
8
family dna
8
active site
8
frameshift fidelity
8
dpo4 generates
8

Similar Publications

: Major Depressive Disorder (MDD) is a prevalent and debilitating mental disorder that has been linked to hyperhomocysteinemia and folate deficiency. These conditions are influenced by the methylenetetrahydrofolate reductase () gene, which plays a crucial role in converting homocysteine to methionine and is essential for folate metabolism and neurotransmitter synthesis, including serotonin. : This study explored the association between and polymorphisms among Saudi MDD patients attending the Erada Complex for Mental Health and Erada Services outpatient clinic in Jeddah, Saudi Arabia.

View Article and Find Full Text PDF

RecQ helicases, highly conserved proteins with pivotal roles in DNA replication, DNA repair and homologous recombination, are crucial for maintaining genomic integrity. Mutations in RECQL4 have been associated with various human diseases, including Rothmund-Thomson syndrome. RECQL4 is involved in regulating major DNA repair pathways, such as homologous recombination and nonhomologous end joining (NHEJ).

View Article and Find Full Text PDF

Phosphorylation-dependent WRN-RPA interaction promotes recovery of stalled forks at secondary DNA structure.

Nat Commun

January 2025

Mechanisms, Biomarkers and Models Section - Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena, 299 - 00161, Rome, Italy.

The WRN protein is vital for managing perturbed replication forks. Replication Protein A strongly enhances WRN helicase activity in specific in vitro assays. However, the in vivo significance of RPA binding to WRN has largely remained unexplored.

View Article and Find Full Text PDF

Herpesviruses rely on host RNA polymerae II (RNA Pol II) for their mRNA transcription, yet the mechanisms of which has been poorly defined, while certain herpesviruses can enhance viral gene transcription by altering the RNA Pol II location, modulating its phosphorylation, or directly interacting with RNA Pol II. However, the influence of herpesviruses on RNA Pol II transcription extends beyond these direct effects. Here, we present a novel mechanism by which the host cell cycle regulates viral gene transcription via RNA Pol II during infection by Anatid Herpesvirus 1 (AnHV-1), an avian alpha-herpesvirus.

View Article and Find Full Text PDF

Nano-plastics (NPs) and heavy metals have attracted growing scientific attention because of both pollutants' wide distribution and ecotoxicity. However, the long-term combined toxicity of NPs and mercury (Hg) on planktonic copepods, a crucial presence in marine environments, is unknown. Here, our study aimed to investigate the multigenerational phenotypic responses of the planktonic copepod Pseudodiaptomus annandalei to polystyrene NPs (about 50 nm) and Hg (alone or combined) at environmentally realistic concentrations (23 μg/L for NPs and 1 μg/L for Hg), and the underlying molecular mechanisms were explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!