WT1 was originally identified as a Wilms' tumor suppressor gene, but it may have oncogenic potential in leukemia and in some solid tumors. WT1 is a transcription factor that has been implicated in the regulation of target genes related to apoptosis, genitourinary differentiation, and cell cycle progression. Because induction of WT1 leads indirectly to increased p21 expression in osteosarcoma cells, we investigated the possibility that other genes involved in the G(1)/S phase transition might also be WT1 targets. Cyclin E plays a crucial role in the cell cycle by activating cyclin-dependent kinase 2, which phosphorylates Rb, leading to progression from G(1) into S phase. We identified several WT1 binding sites in the cyclin E promoter. We demonstrate that WT1 binds to these sites and that in transient transfection assays WT1 represses the cyclin E promoter. This activity is dependent on the presence of a binding site located downstream of the transcription start site. In intact cells, induction of WT1 expression down-regulates cyclin E protein levels. These results provide the first demonstration that WT1 can directly modulate the expression of a gene involved in cell cycle progression.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M201336200DOI Listing

Publication Analysis

Top Keywords

cell cycle
12
wt1
10
cycle progression
8
induction wt1
8
cyclin promoter
8
cyclin
5
cyclin target
4
target wt1
4
wt1 transcriptional
4
transcriptional repression
4

Similar Publications

High Areal Loading Silicon Nanoparticle-Based Lithium-Ion Batteries.

ACS Appl Mater Interfaces

January 2025

Electrical & Computer Engineering Department, Montana State University, Bozeman, Montana 59717, United States.

Interfacial mechanical stability between silicon (Si) and the current collector is crucial when high areal-loading of Si is demanded as intense stress develops at the interface due to its extreme volume alteration during the lithiation-delithiation process. Therefore, we propose using a thin, rough, porous, and highly conductive carbon nanotube network (CNT-N) as a buffer layer between the Si and current collector that provides abundant anchor sites for Si nanoparticles. The strong and elastic CNT-N, which is not involved directly in the lithiation process, reduces stress at interfaces between the Si and CNT-N and the CNT-N and current collector.

View Article and Find Full Text PDF

Optimal strategies for correcting merotelic chromosome attachments in anaphase.

Proc Natl Acad Sci U S A

February 2025

Courant Institute for Mathematical Sciences and Department of Biology, New York University, New York, NY 10012.

Accurate chromosome segregation in mitosis depends on proper connections of sister chromatids, through microtubules, to the opposite poles of the early mitotic spindle. Transiently, many inaccurate connections are formed and rapidly corrected throughout the mitotic stages, but a small number of merotelic connections, in which a chromatid is connected to both spindle poles, remain lagging at the spindle's equator in anaphase. Most of the lagging chromatids are eventually moved to one or the other pole, likely by a combination of microtubules' turnover and the brute force of pulling by the microtubules' majority from the one pole against the microtubules' minority from the other pole.

View Article and Find Full Text PDF

Cardiovascular and cardiometabolic diseases are leading causes of morbidity and mortality worldwide, driven in part by chronic inflammation. Emerging research suggests that the bone marrow microenvironment, or marrow niche, plays a critical role in both immune system regulation and disease progression. The bone marrow niche is essential for maintaining hematopoietic stem cells (HSCs) and orchestrating hematopoiesis.

View Article and Find Full Text PDF

In the ancient microbial Wood-Ljungdahl pathway, carbon dioxide (CO) is fixed in a multistep process that ends with acetyl-coenzyme A (acetyl-CoA) synthesis at the bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase complex (CODH/ACS). In this work, we present structural snapshots of the CODH/ACS from the gas-converting acetogen , characterizing the molecular choreography of the overall reaction, including electron transfer to the CODH for CO reduction, methyl transfer from the corrinoid iron-sulfur protein (CoFeSP) partner to the ACS active site, and acetyl-CoA production. Unlike CODH, the multidomain ACS undergoes large conformational changes to form an internal connection to the CODH active site, accommodate the CoFeSP for methyl transfer, and protect the reaction intermediates.

View Article and Find Full Text PDF

'Lanjingling' [China National Plant Variety Protection (CNPVP) 20200389] is the first new nationally registered cultivar of blue honeysuckle (Lonicera caerulea L.) developed by the Northeast Agricultural University for the fresh-fruit market (Zhu et al. 2022).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!