Although cytokine-induced nuclear factor kappaB (NF-kappaB) pathways are involved in muscle wasting subsequent to disease, their potential role in disuse muscle atrophy has not been characterized. Seven days of hind limb unloading led to a 10-fold activation of an NF-kappaB-dependent reporter in rat soleus muscle but not the atrophy-resistant extensor digitorum longus muscle. Nuclear levels of p50 were markedly up-regulated, c-Rel was moderately up-regulated, Rel B was down-regulated, and p52 and p65 were unchanged in unloaded solei. The nuclear IkappaB protein Bcl-3 was increased. There was increased binding to an NF-kappaB consensus oligonucleotide, and this complex bound antibodies to p50, c-Rel, and Bcl-3 but not other NF-kappaB family members. Tumor necrosis factor alpha (TNF-alpha) and TNF receptor-associated factor 2 protein were moderately down-regulated. There was no difference in p38, c-Jun NH(2)-terminal kinase or Akt activity, nor were activator protein 1 or nuclear factor of activated T cell-dependent reporters activated. Thus, whereas several NF-kappaB family members are up-regulated, the prototypical markers of cytokine-induced activation of NF-kappaB seen with disease-related wasting are not evident during disuse atrophy. Levels of an anti-apoptotic NF-kappaB target, Bcl-2, were increased fourfold whereas proapoptotic proteins Bax and Bak decreased. The evidence presented here suggests that disuse muscle atrophy is associated with activation of an alternative NF-kappaB pathway that involves the activation of p50 but not p65.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.01-0866com | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!